Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University, and some material from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

- homework 7 due today Wed. 11:59p
- run the traceroute command and look at traffic in wireshark
 - compare with pkts you're generating

2. Internet routing

- overview
- intra-AS routing
- inter-AS routing

3. Internet Control Message Protocol (ICMP)

Internet Routing OVERVIEW

From graph algorithms to routing protocols

Need to address Internet reality

1. Internet is network of networks

- hierarchical structure
- routers not all identical
 - some routers connect different networks together
- each network admin may want to control routing in its own network

2. Scalability with billions of destinations

- don't all fit in one routing table
- can't exchange routing tables this big
 - would use all link capacity

Scalable routing on the Internet

Aggregate routers into regions called Autonomous Systems

Autonomous Systems (AS)

- aka domain
- network under single administrative control
 - company, university, ISP, ...
- 30,000+ ASes: AT&T, IBM, Wesleyan ...
- each AS has a unique 16-bit AS #
 - Wesleyan: AS167
 - BBN: used to be AS1: was first org to get AS # then L3 later acquired

```
AS160
        U-CHICAGO-AS - University of Chicago, US
AS161
        TI-AS - Texas Instruments, Inc., US
AS162
        DNIC-AS-00162 - Navy Network Information Center (NNIC), US
AS163
        IBM-RESEARCH-AS - International Business Machines Corporation
AS164
        DNIC-AS-00164 - DoD Network Information Center, US
AS165
        DNIC-AS-00165 - DoD Network Information Center, US
AS166
        IDA-AS - Institute for Defense Analyses, US
AS167
        WESLEYAN-AS - Wesleyan University, US
AS168
        UMASS-AMHERST - University of Massachusetts, US
AS169
        HANSCOM-NET-AS - Air Force Systems Networking, US
```

Hierarchical routing

Idea

- impose 2nd hierarchy on Internet: limits which routers talk to each other
- 1st hierarchy: address hierarchy governs how packets are forwarded

2-level route propagation hierarchy

- intra AS routing protocol between routers in same AS
 - aka intra domain routing protocol
 - aka interior gateway protocol
 - each AS selects its own
- inter AS routing protocol between gateway routers in different ASes
 - aka inter domain routing protocol
 - aka exterior gateway protocol
 - Internet-wide standard

Policy may dominate performance

Q: Can routers in different ASes run different intra AS routing protocol? Q: Why are there different intra and inter-AS protocols?

Focus is performance

Hierarchical routing

Forwarding table

- intra-AS sets entries for internal dsts
- inter-AS & intra-AS sets entries for external dsts

Gateway router

- at edge of its own AS
- direct link to router in another AS
- perform inter-AS as well as intra-AS routing
- distributes results of inter-AS routing to other routers in AS

Example: set forwarding table in router 1d

Suppose AS1 learns (via inter-AS protocol)

- subnet x is reachable via AS3 (gateway 1c) but not via AS2
- inter-AS protocol propagates reachability info to all internal routers

Router 1d determines from intra-AS routing info

- that its interface y is on least cost path to 1c.
- installs forwarding table entry (x,y)

Example: choosing among multiple ASes

Suppose AS1 learns from inter-AS protocol

subnet x is reachable from AS3 and from AS2

To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dst x

- may take policy into account
- this is also job of inter-AS routing protocol!

Internet ROUTING INTRA-AS ROUTING

Inter-AS tasks

Suppose router in AS1 receives pkt destined outside of AS1

– router should forward packet to gateway router, but which one?

AS1 must

- learn which dsts are reachable through AS2, which through AS3
- propagate this reachability info to all routers in AS1
- \Rightarrow job of inter-AS routing!

Most common intra-AS routing protocols

RIP

- Routing Information Protocol
- distance vector protocol

(E)IGRP

- (Enhanced) Interior Gateway Routing Protocol
- Cisco proprietary for decades, until 2016
- distance vector protocol

IS-IS

- Intermediate System to Intermediate System
- link state protocol

OSPF

- Open Shortest Path First
- link state protocol

Open Shortest Path First (OSPF)

Open

i.e., publicly available

Link-state algorithm

- each router floods its link state to all other routers in AS
 - messages carried directly over IP
 - message authentication possible
 - supports both unicast (1src –1dst) and multicast (1src multiple dst)
- each router builds topology map
- 3. route computation using Dijkstra's
 - can have multiple paths with same cost
 - traffic can go over different paths
 - can have different costs per link depending on type of service
 - e.g., satellite link cost: low for best effort, high for real time

Hierarchical OSPF in large domains

Link-state advertisements only in area:

internal routers have detailed area topology but only know direction (shortest path) to networks in other areas (like distance vector between areas)

Internet ROUTING INTER-AS ROUTING

Border Gateway Protocol (BGP)

The de facto inter-domain routing protocol

- "glue that holds the Internet together"
- path vector protocol

BGP provides each AS a means to

- eBGP: external
 - obtain subnet reachability info (routes) from neighboring ASes
- iBGP: internal
 - propagate externally learned reachability info (routes) to all routers in AS
 - similar to intra-AS routing protocols but more scalable
- determine "good" routes to other networks
 - based on reachability info and policy

Allows subnet to advertise its existence to rest of Internet

– "I am here"

Q: why do all ASes need to use same inter-AS protocol

eBGP vs. iBGP connections

gateway routers run both eBGP and iBGP protocols

How eBGP works

Similarities with distance vector

- per dst route info advertised
- no global sharing of network topology
- iterative distributed convergence

AS advertises to other ASes its best route to 1 or more IP prefixes

AS selects best route it hears advertised for a prefix

Differences from distance vector

- selects best route based on policy not min cost
- path vector routing
 - advertises entire path for each dst rather than cost
 - allows policies based on full path
 - avoids loop: if your AS is in path then discard
 - selective route advertisements
 - choose not to advertise route to dst for policy reasons
 - aggregate routes for scalability: e.g., a.b.*.* and a.c.*.* become a.*.*.*

Message contents for path advertisement

Advertised prefix includes BGP attributes

– prefix + attributes = BGP "route"

2 important attributes

- AS-PATH
 - list of ASes through which prefix advertisement has passed
- NEXT-HOP
 - indicates specific internal-AS router to next-hop AS

Policy-based routing

- gateway receiving route advertisements
 - uses import policy to accept/decline path
 - e.g., never route through AS Y
- determines whether to advertise path to other neighboring ASes

Session

Two BGP routers ("peers") exchange BGP messages

- over semi-permanent TCP connection
- advertise paths to different destination network prefixes

AS3 gateway router 3a

- advertises path AS3,X to AS2 gateway router 2c
 - i.e., AS3 promises to AS2 it will forward packets towards X

How path advertisement works

AS2 gateway router 2c

receives path advertisement AS3,X (via eBGP) from AS3 router 3a

Based on AS2 policy

- AS2 router 2c accepts path AS3,X
 - propagates (via iBGP) to all AS2 routers
- AS2 router 2a advertises (via eBGP) path AS2, AS3, X to AS1 router 1c

What if there are multiple routes?

Gateway router may learn about multiple routes to dst AS

Route to use is up to AS but various strategies

- routes through peer ASes are better (don't pay)
- shorter AS paths are better
- lower cost within AS is better
 - hot potato routing: choose local gateway with lowest intra AS cost

- ...

In practice

BGP uses a more complicated version of hot potato routing

Multiple routes to destination AS

AS1 gateway router 1c

- learns path AS2,AS3,X from 2a
- learns path AS3,X from 3a
- based on policy
 - chooses path AS3,X, and advertises path within AS1 via iBGP

Interactions between BGP and OSPF

Q: how does router set forwarding table entry to distant prefix?

Interactions between BGP and OSPF

Q: how does router set forwarding table entry to distant prefix?

dest interface

X 2

1a, 1b, 1d learn about dst X via iBGP from 1c

path to X goes through 1c

1d: OSPF intra-domain routing

to get to 1c, forward over outgoing local interface 1

1a: OSPF intra-domain routing

to get to 1c, forward over outgoing local interface 2

Policy-shaped route selection

Political, economic, security considerations

Shaped by business relationships between ASes

- AS1 is customer of AS2 (AS 1 pays AS2)
- AS1 is provider of AS 2
- AS1 is peer of AS 2 (peers don't pay each other to exchange traffic)

E.g.,

- don't want to carry commercial traffic on university network
- traffic to apple shouldn't transit through google
- pentagon traffic shouldn't transit through Iraq

Why BGP is so complicated!

Achieving policy via advertisements

A,B,C

are provider networks

X,W,Y

- are customer (of provider networks)
- X is dual-homed: attached to two networks

Policy to enforce

- X does not want to route from B to C via X
- so X will not advertise to B a route to C

Why different intra- vs. inter-AS routing?

Policy

- inter-AS
 - admin wants control over how its traffic routed, who routes through its net
- intra-AS
 - single admin, so no policy decisions needed

Scale

hierarchical routing saves table size, reduced update traffic

Performance

- inter-AS
 - policy may dominate over performance
- intra-AS
 - · can focus on performance

INTERNET CONTROL MESSAGE PROTOCOL OVERVIEW

Internet Control Message Protocol (ICMP)

Used by hosts & routers to communicate network-level information

- error reporting
 - unreachable host, network, port, protocol
- echo request/reply
 - used by ping)
- network-layer above IP
 - ICMP msgs carried in IP pkts

ICMP message

 type, code plus first 8 bytes of IP pkt causing error

Type	Code	D <u>escription</u>
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

Source sends series of segments or packets to destination

- first set has TTL =1
- second set has TTL=2, etc.
- unlikely port number

When *n*th set arrives to nth router

- router discards and sends sourceICMP message (type 11, code 0)
- ICMP message includes name of router & IP address

When ICMP msg arrives

source records RTTs

Stopping criteria

TCP segment or UDP datagram eventually arrives at dst host

- dst returns ICMP "port unreachable" message
- source stops

ICMP traceroute

We're generating an ICMP echo request

Intermediate routers

respond with ICMP ttl expired

Final destination

responds with ICMP echo reply