Lecture 18: Network Layer

Link State and Distance Vector Routing

COMP 332, Spring 2018
Victoria Manfredi

WESLEYAN

u N I Vv E R § I T Y

»
»®
‘w

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— homework 6 due today by 11:59p

— homework 7 posted
* but will likely make minor clarifications to programming part

2. Control plane
— link state routing
— distance vector routing
— compare link state vs. distance vector

3. Network programming
— raw sockets and byte packing

Control Plane
LINK STATE ROUTING

Dijkstra’s algorithm

Link state: i.e., network topology, link costs

— known to all nodes, accomplished via link state broadcast
* msg sent to every other node in network

— all nodes have same global info

Computes least cost paths | Given path, put 15t hop
— from one “source” node to all other nodes “— router for each dst in
— obtain forwarding table for that node forwarding table
lterative

— after k iterations, know least cost path to k destinations
 if n nodes, loop n times

Dijkstra’s algorithm

c(x,y): link cost from node x to y
D(Vv): current cost from source u to dst node v
p(v): predecessor node along path from source uto v

N'": set of nodes whose least cost path definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,u 5,u 1,u o0 0
1
2
3
4
5
Initialization
N' = {u}
for all nodes v
Source if v adjacent to u
node

then D(v) = c(u,v)
else D(v) =

Dijkstra’s algorithm

Step N’
u 2,U
ux 2.U
UXyV

UXYVW

UXyVWZ

g D WODN-—_O

5

Source
node

D(v),p(v) D(w),p(w) D(x),p(x)

)

c(x,y): link cost from node x to y

D(Vv): current cost from source u to dst node v

p(v): predecessor node along path from source uto v
N'": set of nodes whose least cost path definitively known

D(y).p(y) D(z),p(2)

>0) o0
(&)

o,u
4 X

4y
SO
Loop
Find w ¢ N's.t. D(w) is min
Add w to N'
Update D(v) for all neighbors v € N' of w
D(v)=min(D(v), D(w)+c(w,v))
5 Until all nodes in N

Dijkstra’s algorithm

Step

g D WODN-—_O

N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
u 2,U o,u °0 °0
ux 2.U 4,x - 0
UXyV @ 4
UXyvw ‘
uxyvwz
Resulting shortest path tree Forwarding table at u
dst | link
v | (W)
X | (u,x)
y | (ux)
wo| (ux)
z | (u,x)

Algorithm complexity with n nodes

Each iteration: need to check all nodes not in N’
— n(n+1)/2 comparisons: O(n?), more efficient implementations possible

Network is dynamic
— link goes down: link state broadcast
— router goes down: remove link and all nodes recompute

Oscillations possible
— when congestion or delay-based link cost

initially reccirnpute ... recompute
rOUting Need to prevent routers
; o from synchronizing

computations:
0 ‘0/ T Have routers randomize
1 1+e when they send out link

T advertisements

X, y detect X, Y, z detect

better path better path

Control Plane
DISTANCE VECTOR ROUTING

Distance vector routing

Distance vector (DV)
— vector of best known costs from router to each dst and link to use

Each node x maintains

— Link cost from x to each neighbor v
* c(X,V)

— X's own DV
» D,(y): estimate of least cost path from x to node y
* Dx=[D«(y):yeN]

— DV for each nbr v
* D,(y): estimate of least cost path from neighbor v to node y

* Dy=[Duy):yeN]

Each node periodically sends its own DV to neighbors
— rather than link state costs

Bellman-Ford equation to update DV estimates

Uses dynamic programming
— break problem into simpler sub-problems
— solve each sub-problem once and store solution

Bellman-Ford equation
D, (y) := cost of least-cost path from xto y
D.(y)=min{c(x,v)+ D,y)}foreach nodey €N
) |

cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x

When x receives new DV estimate from neighbor
— X updates its own DV using B-F equation

Example: compute min cost path from u to z

Bellman-Ford equation

Dy(z) =min {c(u,v) + D,(2),
c(u,x) + Dy(2),
c(u,w) + Dy(2) }

=min {2 + 5,
1+ 3,
5+ 3}

=4

Where
D(z)=95,D,(z)=3,D,(z)=3

Node achieving minimum is next hop in shortest path
— putin forwarding table

Distance vector algorithm run at each node x

Initialization Loop
Foralldsty e N)
if y is nbr of x X waits for change in local link
D,(y) =c(X,Y) cost or DV msg from neighbor
else l
Dy(y) = =

recompute estimates

For each nbr wand dst y e N: D.(y)=minv{c(x,v)+D,y)}
Dy(y) = <

if X's DV to any dst has

Send x’s DV to all nb '
endxs LDV 10 al hbrs w changed, notify neighbors
D, = [D«(y):y €N] |

Q: when does loop terminate?
When no more changes

Dy (y) = min{c(x,y)+D,(y), c(x,2)+D,(y)} D,(z) = min{c(x,y)*+D,(z), c(x,2)+D,(z)}

=min{2+0, 7+1} =2 =min{2+1,7+0} =3
Node x costto cost to
Xy z y z
c XO/Z V4 c xﬂ 3
g Yoo § Yi2 0 1
Z|low oo Z\7 10

cost to
Nodey x y Z 5 :
X
5 ¥ 7
= Z o0 o0 o0
Node z cost to
Xy z

D, (y) =

Node x costto
Xy z
—
c x{0 2
e Y] oo oo
- Z o0 o0 (0]
cost to
Nodey (x y z
X
B
“— Z
Node z
c X
oy
oz

min{c(x,y)+D,(y),
=min{2+0, 7+1} =2

from

C(x,2)+D,(y)} Dy(z)=

min{c(x,y)+D,(z),
=min{2+1, 740} =3

c(x,2)+D,(2)}

= min{c(z,x)+D,(x),

¢(z,y)+D,(x)}

=min{/+0, 1+2} =3

cost to
X

cost to

cost to

Node x

Y Z

cost to
X

M — O

AN O
onN ™M

Y Z

X >N

Node y

XOOOOOO
yi2 0 1
ZOOOOOO

WoJJ

cost to
Xy z

cost to
y

Node z

Node x costto
Xy z
——
c xt0 2 7
eyoooo 0
e ZOOOO o0
cost to
Nodey (x y z
X o0 o0 o0
B
“— Z
Node z
c X
oy
oz

from

X y Z

No change:

don’t send
out DV

from

from

cost to
(X Yy Z

No change:
don’t send
out DV

I XV Z

No change:
don’t send
out DV

cost to
X Yy Z

No change:
don’t send
out DV

DONE

Node detects local link cost change

1. Updates routing info
1

2. Recalculates DV 1
3. If DV changes, notify neighbors 6&9

50

Good news travels fast
t,: y detects link-cost change, updates its DV, informs its neighbors

t,. z receives update from y, updates its table, computes
new least cost to x, sends its neighbors its DV

t,: yreceives z's update, updates its distance table. Y's least
costs do not change, so y does not send a message to z

Bad news travels slow

Count to infinity problem
— 44 iterations before algorithm stabilizes

Intuitively
— when z tells y it has a path to x, y has no way of knowing that z is
using y on its path

cost to cost to
Xy z Xy Z
4 l\1 x|04 3 x| 04 3
QLG Sylao 1 ® 5 yl60 1
o “ z[51 0 “ z[51 0
= min{c(y,x)+ , c(y,z) + }
= min{60+0, 1+5} = Problem arises because y
—> Routing Loop still expects z can get to x
= min{c(z,x) + c(z.y) +) with cost of 5
= min{50+0 , 1+6} =

=% Count-to-infinity

A proposed solution: poisoned reverse

If Z routes through Y to get to X
— Ztells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)

60 cost to
3& YIXy z _
1 x[0a 3 D00 =min{c(y,x)+D,(x), oy, z)+D,(x)}
56 £ yla0 1 = min{60+0, 1+} = 60
= Zlo1 0

Q: Will this completely solve count to infinity problem?
— no, only for 2 node loops

Another proposed solution: hold time
— don'’t process route updates for period of time after route retraction

— ameliorates problem but does not solve

Distance vector routing summary

Easy to implement
— likely you will implement for hw8 :-)

Distributed

— X doesn’t compute paths in isolation
— requires route info (path costs) computed by neighbors

lterative

— X updates its DV whenever
* local link costs change
« DV update received from nbr

Asynchronous
— updates, exchanges happen asynchronously

Self-terminating
— X stops updating DV when no more changes received

Control Plane

LINK STATE VS. DISTANCE
VECTOR ROUTING

Message complexity n nodes
E links

Link state

messages sent

« every node floods its link state message out over every link in network
to reach every node

* message size depends on the number of neighbors a node has
« any link change requires a broadcast

Distance vector

— # of messages which varies
* nodes only exchange messages between neighbors

* message size is proportional to the number of nodes in the network
« if link changes don't affect shortest path, no message exchange

Speed of convergence n nodes
INKS

Link state

n-1
— X, =n(n+1)/2=
« search through n-1 nodes to find min, recompute routes
« search through n-2 nodes to find min, recompute routes

— converges quickly but may have

« route computation is centralized
« a node stores a complete view of the network

Distance vector
— slow to converge and convergence time
« route computation is distributed
— may be : problem

What happens if router malfunctions? E?oges

Link state
— node can advertise incorrect link cost
— each node computes only its own table

Distance vector
— DV node can advertise incorrect path cost
— each node’s DV used by others: errors propagate through network

Both have strengths and weaknesses.
One or the other is used in almost every network

+ CENTER

Routing blackholes

The A Register’

Biting the hand that feeds IT

SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH

Data Center » Networks
Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 40() SHAREY

Last Friday, someone in Google fat-thumbed a border gateway protocol
(BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory “leaked” a big route
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated
as transit.

Since Google doesn't provide transit services, as BGP Mon explains, that
traffic either filled a link beyond its capacity, or hit an access control list,
and disappeared.

The outage in Japan only lasted a couple of hours, but was so severe
that Japan Times reports the country's Internal Affairs and
Communications ministries want carriers to report on what went wrong.

BGP Mon dissects what went wrong here, reporting that more than
135,000 prefixes on the Google-Verizon path were announced MHQ@
shouldn't have been.

SCIENCE

The AR Register’

Biting the hand that feeds IT
CENTER SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE
Security
Evil ISPs could disrupt Bitcoin's
blockchain

Boffins say BGP is a threat to the crypto-currency

By Richard Chirgwin 11 Apr 2017 at 03:03 11 SHAREY

Attacks on Bitcoin just keep coming: ETH Zurich boffins have worked
with Aviv Zohar of The Hebrew University in Israel to show off how to
attack the crypto-currency via the Internet's routing infrastructure.

That's problematic for Bitcoin's developers, because they don't control
the attack vector, the venerable Border Gateway Protocol (BGP) that
defines how packets are routed around the Internet.

BGP's problems are well-known: conceived in a simpler era, it's designed
to trust the information it receives. If a careless or malicious admin in a
carrier or ISP network sends incorrect BGP route information to the
Internet, they can black-hole significant chunks of ‘net traffic.

In this paper at arXiv, explained at this ETH Website, Zohar and his

wr edi @%@Pﬁgﬁog 5‘“—1 Maria Apostolaki and Laurent Vanbever, show 26

off two
attack.

ys BGP can attack Bitcoin: a partition attack, and a delay

Network Programming
RAW SOCKETS

Raw sockets

Take bytes put into socket and push out of network interface
— no |P or transport layer headers added by operating system!

Lets you create your own transport and network layer headers

— sel fleld values as you choose
* e.g., time-to-live fields

Raw sockets

send_sock = socket.socket(

socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW)
recv_sock = socket.socket(
socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP)

send_sock.setsockopt(socket.IPPROTO IP, socket.IP HDRINCL,)

recv_sock.settimeout(

https://docs.python.org/3/library/socket.html

Byte packing and structs

(self):

ECHO_REQUEST_TYPE =
ECHO_CODE =

icmp_type = ECHO_REQUEST_TYPE
icmp_code = ECHO_CODE
icmp_checksum =
icmp_identification = self.icmp_id
icmp_seq_number = self.icmp_seqno

icmp_header = struct.pack(
icmp_type,

icmp_code,

icmp_checksum,
icmp_identification,
icmp_seq_number)

return icmp_header

https://docs.python.org/3/library/struct.ntml

