Lecture 15: Transport Layer

Congestion Control

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1.

Announcements
— homework 6 out Wed.
— midterm should be graded Wed.

Congestion causes and costs

TCP congestion control

Network layer overview

Congestion
CAUSES AND COSTS

What if sender overwhelms network?

Receive buffer is not only resource limitation
— every pkt has to travel through path of routers
— routers may be congested, have long queues ...

Causes of network congestion
— many senders competing for network resources

— senders lacking knowledge
« amount of resources available (bandwidth)
 # of other senders competing

Costs of network congestion

As queues in bottleneck link fill up

— large packet delays Bad
— dropped packets feedback
loop!

As timeouts expire at sender due to delays/drops
— packets retransmitted

Problem
— retransmission treats symptoms but not underlying problem

Q: How to solve underlying problem of congestion?

— reduce sending rate ... but what should sending rate be?
» depends on available bandwidth
» sender increases/decreases sending rate based on congestion level

Recall link and network resources are shared

1. Hosts: divide data to send
into fixed-length packets

Host 1 “ 2. Routers: interleave packets
from different hosts on links
\
B/ AT — q
/ —

Host 2 m Www.google.com

Scenario 1: no retransmission

Original data: /.,

2 Senders, no
retransmission

Host B «g

R/2 _

}\‘out

Host A

. <

Output link
capacity: R

—]

—~

Max p:er-
connection

throughput: R/2

Ain RI/2

delay

Throughput: /A

Infinite buffers:
unlimited shared
output link buffers

2 Receivers

Large delays as
arrival rate, A,
approaches
capacity

Q: Why R/27?

R/2

Scenario 2: retransmission
kin

Retransmitted +
original data: A’

Finite buffers:
limited shared
output link buffers

2 Senders and HostA
retransmission

Output link l

capacity: R Loss

Sender retransmits timed-out packet

2 Recelivers

Lin = Aoyt @pp-layer input equals app-layer output
Nin 2 Ai- transport-layer input includes retransmissions

Performance now depends on how retransmission performed

Scenario 2: retransmission + perfect knowledge

k " }Mout

Finite buffers ﬂ

—=

Output link
Capacity: R Free bUffer

space
Idealization: perfect knowledge RI2-

— sender sends only when router buffers available 3
<
— no loss occurs, so A/, =,

Scenario 2: retransmission only when lost

Output link
Capacity: R Free bUffer
space
R/2
|dealization: known loss
— packets can be lost, dropped at E
router due to full buffers <

— only resend packet known to be lost

Finite buffers

7‘*out

. when sending at R/2,
i some packets are

\ retransrmissions but

i asymptotic goodput
is still R/2 (why?)

7"i'n R/2

Scenario 2: retransmission causing duplicates

7‘*out

Finite buffers

Output link
capacity: R Free buffer
Space

P e Sp-oosoooa -
Realistic: duplicates ’

— packets can be lost, dropped at router
due to full buffers

— sender times out prematurely, sending
two copies, both of which are delivered

when sending at R/2,
some pgckets are
retransrhissions but
asymptotic goodput
is still R/2 (why?)

7“out

TCP
CONGESTION CONTROL

Goals of TCP congestion control

1. Discover available bandwidth
— how much bandwidth can be used without causing congestion
» will vary over time
— estimate starting from no info

2. Correctly set sending rate
— should not exceed available bandwidth

3. Fairness
— no user gets all of the bandwidth

TCP Congestion Control

sender sequence number space

— cwnd —s] TCP sending rate

— roughly
* send cwnd bytes

\ wait RTT for ACKs

last byte last bvte

ACKed sent,not- eant | « then send more bytes
yet ACKed
(“in-flight™)

cwnd
rate ~ —— bytes/sec
ate T ytes/

Sender limits transmission

LastByteSent -
LastByteAcked = cwnd Q: How does sender

estimate cwnd?

— cwnd is dynamic, function of
perceived network congestion

To estimate cwnd

Detect congestion

— delays
« large RTTs: too variable to be used in practice

—

— duplicate ACKs

* isolated loss Use to adjust cwnd,

affecting sending rate
— timer expired
* multiple losses

=

How to intuitively adjust cwnd
— ACK received: increase cwnd
— loss detected: decrease cwnd

3 states in TCP finite state machine

Goal: send segments, adjust cwnd as needed

Slow start
— determine available bandwidth starting from no info

Congestion avoidance
— deal with fluctuations in bandwidth

Fast recovery
— quickly recover from isolated lost packets

We'll first look at different states, then full FSM

Slow start: initialization

Initial rate is “slow”

— relative to original TCP which
had no congestion control

— initially cwnd =1 MSS

Ramp up exponentially fast

— every time ACK received
« cwnd = cwnd + MSS

— essentially doubles cwnd
every RTT

time

Congestion avoidance
Additive Increase Multiplicative Decrease (AII\/ID)‘
— additive increase (cautious)
* increase cwnd by 1 MSS every RTT until loss detected

— multiplicative decrease (aggressive)
» cut cwnd in half after loss

Probe cautiously
L for usable
bandwidth

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time

Slow start: when to stop exponential increase?

Slow start)
— initially cwnd = 1 MSS €

— every time ACK received >

* double cwnd %

When cwnd = ssthresh
— go to congestion avoidance
— use AIMD

Timeout
— restart slow start
— ssthresh = cwnd/2
— cwnd =1 MSS

(in segments)

14—

o O N
| | l

Timeout

cwnd = 12 TCP Reno

AIMD

ssthresh CWnd=

| [| | | | [| [| | | | | |
6 7 8 9 10 11 12 13 14 15
Transmission round

If 3 duplicate ACKs

— go to fast recovery

— ssthresh = cwnd/2

— cwnd = ssthresh + 3 MSS

Finite state machine

duplicate ACK
dupACKcount++

*

A

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount=0

cwnd = cwnd+MSS

new ACK

cwnd = cwnd + MSS * (MSS/cwnd)
dupACKcount=0
transmit new segment(s), as allowed

()

ew
new ACK

dupACKcount=0
transmit new segment(s),
as allowed

cwn_d > ssthresh

A ¥ Congestion

5
) timeout

ssthresh = cwnd/2

A

2o
.(Qé\p timeout

duplicate ACK
dupACKcount++

avoidance

ssthresh = cwnd/2 A
cwnd = 1 MSS

cwnd = 1 MSS ZiQ dupACKcount=0
dupACKcount= 0 ! tL,C ! t retransmit missing segment
retransmit missing segment SIrST][ﬁI(')euSh = cwnd/2
cwnd = 1 NewACK | dupACKcount==

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3

dupACKcount=0
retransmit missing
segment

cwnd = ssthresh
dupACKcount=0

ssthresh= cwnd/2
cwnd = ssthresh+3MSS

retransmit missing

retransmit missing segment

g Fast segment

recovery

A

duplicate ACK

cwnd = cwnd + MSS 20
transmit new seament(s). as allowed

Average TCP throughput

Focus just on AIMD

— ignore slow start, assume always data to send

Max rate
— cwnd /RTT

3 dup loss rate

— 05cwnd /RTT

CWND-

W/2-

—_—

/

/

/

— Avg TCP thruput = % (FZ{_V_I\i:_\ID

44

/

bytes/sec

Setting window size

Window is min (rwnd, cwnd)

<

Source Port: 443

Destination Port: 52232

[Stream index: 0]

[TCP Segment Len: 0]

Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes

4

000. = Reserved: Not set

+2:@ ... +... = Nonce: Not set

vess 0..v ... = Congestion Window Reduced (CWR): Not set
vsss +0.. +... = ECN-Echo: Not set

vees 240, ... = Urgent: Not set

vass 2221l ... = Acknowledgment: Set

ssss sass 0... = Push: Not set

Reset: Not set

[] LI I] -0--

>

.. .. En lll0=Fin: Not Set

[TCP Flaas: skkkkkkAxkSx]
indow size value: 8190 rwnd
[Calc i H 90]

~e o Nn.. _LNnn Fo.—7 2 a2 = _ a4 L7 - a1

vumanfredi@wesleyan.edu

22

