Lecture 12: Transport Layer
TCP again

COMP 332, Spring 2018
Victoria Manfredi

1
)

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— homework 5 extension until Thursday at 11:59p

2. TCP

— seq #s and ack #s

— timeouts

— reliable data transport

— connection management

3. Midterm

— covers through whatever we get through today
— overview of exam format

TCP
SEQ #S AND ACK #S

TCP ACKs

Cumulative ACKs (but different than in Go-Back-N)

— ACKSs everything up to sequence number received
— ACKs what receiver expects next, not last packet received

— Only 1 retransmission timer (for first pkt in window
» Sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

. send_base
Initial Sequence _ ISN + k next_seqg_num
Number (ISN)

‘ k bytes 4 N ——]
| | |

Sent + usable not
ACKed but not usable
yet sent

window si

TCP seq. numbers, ACKs

Sequence numbers are synchronized during connection set-up

Host A Host B
ISN: 42 &2 ?\\f ISN: 78
User types ‘C’ —

Seq=42, ACK=79, data = ‘C
d\ Host ACKs receipt of ‘C’,
echoes back ‘C’
/ (‘C’" is 1 byte long)
Host ACKs ‘ Seq=79,ACK=43, data= ‘C’
0S recelp
of echoed /
\
Seq=43, ACK=K

Simple nc scenario

Host 1

- Transmission Control Protocol,
Source Port: 54573
Destination Port: 443
[Stream index:
Handshake: [TCP Segmen
SynchronizeSequence number
ISNs

945206
Acknowledgment number

Header Length :
» Flags: 0x002 (S

Window size value: 65535

Transmission Control Protocol, Src Po
Source Port: 54573
Destination Port: 443
[Stream index: 2]

Data [TCP Segmen

exchange Sequence number:(59452066
[Next sequence number: 59452278]

Acknowledgment number: ¢

Header Length:
» Flags: 0x018 (PSH, ACK)

Window size value: 4122

What are seq and ack #s in next
segment from receiver?

\

—

Host 2

Transmission Control Protocol, Src

S Port: 443 .
DZ:'rc-z:at?.c:n Port: 54573 Convention: SYN
X and FIN take 1

St index: 2
[Stream index: 2] byte of seq #

[TCP Segmeng Len: @1
Sequence numberd 3712814908 Space
Acknowledgment number 7594
Header Length: 4@ bytes
» Flags: @x@12 (SYN, ACK)
Window size value: 14480

Transmission Control Protocol, Src Pc
Source Port: 443
Destination Port: 54573
[Stream index:
[TCP Segment 2
Sequence number:(371281490¢
Acknowledgment number: 594522{5::)
Header Length %@

» Flags: 0x010 (AC
Window size value: 122

[Calculated window size: 15616]
[Window size scaling factor: 128]

Segment size

Max length of IP packet in bytes
— MTU: Maximum Transmission Unit
— 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes

— MSS: Maximum Segment Size

— MSS =MTU — IP hdr— TCP hdr
» TCP header >= 20bytes

TCP segment = [P data

| A \ TCP segment sent when

e full: meets MSS
TCP data TCP hdr | IP hdr not full: timeout

|
IP pkt

TCP
TIMEOUTS

TCP timeout

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
— but RTT varies

Too short

— premature timeout
— unnecessary retransmissions

Too long
— slow reaction to segment loss

How to estimate RTT

SampleRTT

— time from segment transmission to ACK reception

— Ignore retransmissions
* since problems associating retransmitted ACK with right pkt
 will vary: use average of several measurements

= (1-a)* + o*SampleRTT

« exponential weighted moving average
» influence of past sample decreases exponentially fast
« typical value: o = 0.125

Handling variation in RTT

350 ~

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 T, N\A m

200 -

RTT (milliseconds)

¢ sampleRTT
EstimatedRTT

150

100

1 é 1‘ 5 ‘22 ‘29 ‘36 4‘t3 éO é? (%4 ‘71 7‘8 55 52 559 1‘06
time
(seconds)

Timeout interval should be =

— because of variation of RTT values
— average several recent measurements, not just current SampleRTT

— how big should margin of error be?

Handling variation in RTT

Timeout interval should be = EstimatedRTT

— because of variation of RTT values
— large variation in EstimatedRTT = larger safety margin

Estimate SampleRTT deviation from EstimatedRTT

DevRTT = (1-B)*DevRTT + PB*|SampleRTT-EstimatedRTT |
(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

“safety margin”

If timeout occurs: timeout interval is doubled to prevent
premature timeout for subsequent segments

TCP
RELIABLE DATA TRANSFER

TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service
— pipelined segments
— cumulative acks
— single retransmission timer

Retransmissions triggered by

— timeout events
— duplicate ACKs

Let’s initially consider simplified TCP sender
— ignore duplicate acks
— ignore flow control, congestion control

TCP sender (simplified)

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
R NextSegNum = NextSeqNum + length(data)
N if (timer currently not running)
A a start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum

timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

. . . Retransmit first segment in
ACK received, with ACK field value y window, restart timer
if (y > SendBase) {

SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

_ If acks previously unacked segments,
}else stop timer update what is known to be ACKed,

start timer if still unacked segments

TCP: retransmission scenarios

Start timer for

oldest
unacked
segment

Host A Host B

\

e

f—— timeout —

=

-

\
Seq=92, 8 bytes of data

—
ACK=100

XA/

Seq=92, 8 bytes of data

/

ACK=100

/

lost ACK scenario

Host A

‘5
2]
o

e
-4 %,f’

SendBase=92 ~——
‘ Seq=92, 8 bytes of data
\

Seq=100, 20 byte?at&

ACK=100
ACK=120

—— timeout

Seq=92, 8
bytes of data\‘

/

ACK=120

SendBase=120 /

premature timeout

SendBase=100
SendBase=120

TCP: retransmission scenarios

I
)
wn
—~
>
I
o
n
—
9]

B

/

Seq=92, 8 bytes of data

\
Seq=100, 20 bytes%fdz

ACK=100
X

/

ACK=120

———— timeout —

/\

Seq=120, 15 bytes of data

T

cumulative ACK

Duplicate ACKs

Time-out period often relatively long
— long delay before resending lost packet

Duplicate ACKs

— indicate isolated loss (rather than congestion causing many losses)
« sender often sends many segments back-to-back

+ if segment is lost, likely many duplicate ACKs

» ACKs being received indicates some packets received at destination
since ACK sent for every packet: so not congestion

TCP fast retransmit

— if sender receives 3 ACKs for same data (triple duplicate ACKs)
« resend unacked segment with smallest seq #

— Why 37
» pkts may just have been reordered otherwise
« likely that unacked segment lost, so don’t wait for timeout

TCP fast retransmit

Host A Host B
N 57

[Seq= 100%%
\X

send_base=92 l - Seq:92, 8 bytes Of data
o
()

Restart timer, /ACK=1 00
send_base =100 ACK=100

‘{CK=1OO

/
_ACK=100
TSeq=100, 20 bytes of data

E \

v v

fast retransmit after sender
receipt of triple duplicate ACK

Fast retransmit

TCP
CONNECTION MANAGEMENT

Connection Management

Before exchanging data, sender/receiver handshake

— establish connection and connection parameters
« each knowing the other willing to establish connection

— tear down connection when done

application application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at server,client

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at serverclient

, V/ network network Eﬂ
% | 1 . 1

4 1 ! 1 !

sock = sock.connect((host, port)) conn, addr = server_sock.accept()

Agreeing to establish a connection

Q: will 2-way handshake
always work in network?
— variable delays

— retransmitted messages

ESTAB & « e.g. reg_conn(x)) due to
message loss

— message reordering

CZ H — can’t see other side
e —

choose x \req_conn(&
—8 ESTAB

acc_conn(x)
ESTAB &—

Agreeing to establish a connection

2-way handshake failure scenarios:

g Bl

choose x

retransmit
req_conn(x)

ESTAB

g

\req_conn(gL

/0 ESTAB

choose X |~

retransmit

req_conn(x)

% ESTAB

acc_conn(x)

acc_conn(x)

req_conn(x)

client”
terminates

connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

reg_conn(x) '>(
ESTAB €<__

retransmit data(x+1)
data(x+1) ™\
L_ connection |
dient X co\mpletes server
terminates req_conn(x) forgets x
ESTAB
data(x+1) accept
data(x+1)

TCP 3-way handshake

client state q
N

LISTEN
choose init seq num, x
send TCP SYN msg

A

SYNSENT

v received SYNACK(x)
indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain
client-to-server data

\

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

L
T~

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

ESTAB

TCP 3-way handshake: FSM

netstat -ta to see
state of TCP
connections

conn, addr = server_sock.accept()

A
SYN(x) y sock = sock.connect((host, port))
SYNACK(seq=y,ACKnum=x+1)
create new socket for SYN(seg=x)

communication back to client

[,,

‘ ‘ SYNACK(seq=y,ACKnum=x+1)
* ACK(ACKnum=y+1)

ACK(ACKnum=y+1)
A

Look at the state of tcp connections

> netstat -ta

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 Y @ vmanfredismbp2.w.55777 1ga25s60-in-f5.1.https ESTABLISHED
tcp4 3 vmanfredismbp2.w.55736 162.125.34.6.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55717 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55716 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55715 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55714 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55713 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55668 wesfiles.wesleya.http CLOSE_WAIT
tcp4 vmanfredismbp2.w.55486 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55322 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55250 162.125.4.3.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55170 ec2-52-20-75-192.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55072 85.97.201.35.bc..https ESTABLISHED
tcp4 localhost.ipp * K LISTEN

tcpb localhost.ipp * K LISTEN

tcp4 vmanfredismbp2.w. 6.97.a86c¢.1ip4.st.https ESTABLISHED

=E =E=======2=2=2 = =

1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

(SIS I CS B OS I O IIGS BG I OSBGOS I OV IIGCS BGS BSOS

TCP: politely closing a connection

Client, server close connection: each sends TCP segment with FIN bit = 1
— respond to received FIN with ACK (ACK can be combined with own FIN)

client state 7/ E server state
ESTAB N — ESTAB
| clientSocket.close() \FINb.t 1
FIN_ WAIT 1 can no longer it=1, seq=xX
send but can q\> v
receive data __— CLOSE_WAIT
| ACKbit=1; ACKnum=x+1 can still
FIN_WAIT 2 wait for server |— send data
close
_— LAST_ACK
FINbit=1, seq=
TIIV‘I'ED WAIT 4/LN =y can no longer
B T — send data
ACKbit=1; ACKnum=y+1
timed wait ~—~—— v
for 2*max CLOSED

segment lifetime

CLOSED l

FIN segment in Wireshark

l 241 4.063493 vmanfredismpr wireless.we.. 40.97. 120 226 54 55017 - 443 [FI

~ A A_Aannn~na e AN NAN AN Clr JR N - S T AAaN~ Frres a____r

| - .
» Frame 241: 54 bytes on wire (432 bits), 54 bytes captured (432 b1ts) on 1nterface 0
» Ethernet II, Src: 78:4f:43:73:43:26 (78:4f:43:73:43:26), Dst: 129.133.176.1 (3c:8a:b0:1e:18:01)
» Internet Protocol Version 4, Src: vmanfredismbp2.wireless.wesleyan.edu (129.133.187.174), Dst: 40.97.120.226 (40.97.1:
©~ Transmission Control Protocol, Src Port: 55017 (55017), Dst Port: 443 (443), Seq: 3771, Ack: 6504, Len: 0
Source Port: 55017
Destination Port: 443
[Stream index: 5]
[TCP Segment Len: 0]
Sequence number: 3771 (relative sequence number)
Acknowledgment number: 6504 (relative ack number)
Header Length: 20 bytes
©~ Flags: 0x011 (FIN, ACK)
000. = Reserved: Not set
+:@ = Nonce: Not set
vass 0.0 «.u.. = Congestion Window Reduced (CWR): Not set
vass +0.. = ECN-Echo: Not set
vees 220, ..., = Urgent: Not set
«+1 = Acknowledgment: Set
. 0... = Push: Not set
.0.. = Reset: Not set
..0. = Syn: Not set
P aass ssss =aad = Fin: Set
[TCP Flags: sekkskokskokAsokkF]
Window size value: 8192
[Calculated window size: 262144]
[Window size scaling factor: 32]
» Checksum: 0xe59d [validation disabled]

Il msnd wnommsmde s

3c 8a b0 1e 18 @1 78 4f 43 73 43 26 08 00 45 00 <..... x0 CsCé&..E.
00 28 76 59 40 00 40 06 e5 ff 81 85 bb ae 28 61 .(vY@.@.(a
78 e2 d6 €9 01 bb dd 11 e8 4a b0 93 7d 29 50 11 X.vssuss .J..})P.

20 00 e5 9d 00 00 B

Midterm
OVERVIEW

Midterm overview

In class on Wednesday Mar. 28
— closed book, closed notes
— covers material in lectures 1 to 12

Tentative exam format

Still under development but ...
No probability questions

Questions for which you need only provide short answers
- E.g.,
» what is the difference between a recursive vs. iterated query in the DNS?
* how are ports numbers used by UDP to demultiplex incoming segments?

Question on reliable Data Transfer
— Hint
» Given channel characteristics design a protocol

» be able to design a reliable data transfer protocol like the Stop-and-wait
protocol, know your timeline diagrams

+ 2 other longer questions

