
Lecture 11: Transport Layer
Reliable Data Transfer and TCP

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 5 posted

• extension until Thursday at 11:59p

2. Recap
– reliable data transport: channels with errors and loss

3. Pipelined protocols
– go-back-N
– selective repeat
– sequence numbers in practice

4. TCP
– overview
– reliable data transfer

2vumanfredi@wesleyan.edu

Reliable Data Transport

vumanfredi@wesleyan.edu 3

Problems
– underlying channel may flip bits in packet

• both data and ACKs may be garbled
– underlying channel can also lose packets

• both data and ACKs
– checksum, seq. #, ACKs, retransmissions will be of help

• … but not enough

Solution: add countdown timer
– sender waits “reasonable” amount of time for ACK

• retransmits if no ACK received in this time
– if pkt (or ACK) just delayed (not lost)

• retransmission will be duplicate, but seq #’s already handles this
– receiver must specify seq # of pkt being ACKed

vumanfredi@wesleyan.edu 4

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

L
rdt_rcv(rcvpkt)

L
L

L

vumanfredi@wesleyan.edu 5

Why do nothing ? Why not resend pkt0? Because sender doesn’t
know whether ack1 means pkt 0 garbled or pkt 1 duplicate received.

By not resending pkt 0, sender doesn’t introduce potentially
unnecessary (even if valid) traffic: saves bandwidth

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

Premature timeout/delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1
ack1

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

vumanfredi@wesleyan.edu 6

ignore ack1

Reliable Data Transport

vumanfredi@wesleyan.edu 7

first packet bit transmitted, t = 0

sender receive
r

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Problem: maintaining high link utilization
8

Time spent sending stuff

Total time we’re considering

How? get rid of stop-and-wait

Instead: pipelining (also called sliding-window protocols)
– sender allows multiple, in-flight, yet-to-be-acknowledged pkts

• send up to N packets at a time: N packets in flight, unacked
• range of seq #s must be increased
• sender needs more memory to buffer outstanding unacked packets

Achieves higher link utilization than stop-and-wait 9

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

10

3-packet pipelining example

Time spent sending stuff

Total time we’re considering

Cumulative ACKs

Go-Back-N protocol

Sender
– has timer for oldest unacked pkt
– when timer expires

• retransmit all unacked pkts
– pkts received correctly may be

retransmitted

Receiver
– only sends cumulative ack
– doesn’t ack pkt if gap

11vumanfredi@wesleyan.edu

Selective ACKs

Selective Repeat protocol

Sender
– has timer for each unacked pkt
– when timer expires

• retransmit only unacked pkt
– only corrupted/lost pkts are

retransmitted

Receiver
– sends individual ack for each pkt

Q: Sent N packets without receiving ACKs.
How does receiver ACK packets now?

Sliding window
– how sender keeps track of what it can send
– window: set of N adjacent seq #s

• only send packets in window

If window large enough, will fully utilize link

12vumanfredi@wesleyan.edu

Pipelined Protocols

vumanfredi@wesleyan.edu 13

k-bit seq # in pkt header
– window of up to N, consecutive unack’ed pkts allowed

ACK(n) is cumulative ACK
– ACKs all pkts up to, including seq # n
– may receive duplicate ACKs (see receiver)

timer for oldest in-flight pkt
– timeout(n): retransmit packet n and all higher seq # pkts in window

vumanfredi@wesleyan.edu 14

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)
if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

L

15

Resend up to
nextseqnum on

timeout

L

Ignore corrupt

Send as long as pkt
within window

Cumulative ack: move
base to ack# + 1

Out-of-order pkt and all other cases
– discard: no receiver buffering!
– re-ACK pkt with highest in-order

seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt = make_pkt(expectedseqnum,ACK,chksum)

L

16

Retransmit windowsize worth of packets for 1 error
Large window size ⇒ large delays

vumanfredi@wesleyan.edu

Correct pkt with highest in-order seq #
– send ACK, may be duplicate ACK
– need only remember

expectedseqnum

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Pros
– no receiver buffering

• saves resources by requiring packets to arrive in-order
• avoids large bursts of packet delivery to higher layers

– simpler buffering & protocol processing
• can easily detect duplicates if out-of-sequence packet is received

Cons
– wastes capacity

• on timeout for packet N sender retransmits from N all over again (all
outstanding packets) including potentially correctly received packets

Tradeoff: buffering/processing complexity vs. capacity
(time vs. space)

vumanfredi@wesleyan.edu 18

Pipelined Protocols

vumanfredi@wesleyan.edu 19

Rather than ACK cumulatively, ACKs selectively

Receiver individually ACKs all correctly received pkts
– buffers pkts, as needed, for eventual in-order delivery to upper layer

Sender only resends pkts for which ACK not received
– sender timer for each unACKed pkt

Sender window
– N consecutive seq #s
– limits seq #s of sent, unACKed pkts

vumanfredi@wesleyan.edu 20

21vumanfredi@wesleyan.edu

Data from above
– if next available seq # in window,

send pkt

timeout(n)
– resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]
– mark pkt n as received
– if n is smallest unACKed pkt,

• advance window base to next
unACKed seq #

sender receiver
pkt n in [rcvbase, rcvbase+N-1]

– send ACK(n)
– out-of-order: buffer
– in-order

• deliver (also deliver
buffered, in-order pkts)

• advance window to next
not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
– ACK(n)

otherwise
– ignore

vumanfredi@wesleyan.edu 22

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?
23vumanfredi@wesleyan.edu

Example
– seq #’s: 0, 1, 2, 3
– window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

Something is (very) wrong!

Problem: duplicate data
accepted as new in (b)
• receiver sees no difference

in two scenarios!

Q: what relationship
between seq # size and
window size to avoid
problem in (b)?

24

Pros
– more efficient capacity use

• only retransmit missing packets

Cons
– receiver buffering

• to store out-of-order packets
– more complicated buffering & protocol processing

• to keep track of missing out-of-order packets

Tradeoff again between buffering/processing complexity
and capacity

vumanfredi@wesleyan.edu 25

Q: When is selective repeat useful?
When channel generates errors frequently

Sequence numbers

vumanfredi@wesleyan.edu 26

What are they counting?
– bytes, not packets

• sending packets but counting bytes
• so seq #s do not increase incrementally

Sequence # space
– finite

• e.g., 32 bits so 0 to 232-1 values
• must wrap around to 0 when hit max seq #

– TCP initial seq # is randomly chosen from space of values
• security (harder to spoof)
• to prevent confusing segments from different connections
• different OSes set differently: can fingerprint machines

27vumanfredi@wesleyan.edu

How large must seq # space be?
– depends on window size

Example
– seq # space = [0, 24-1]
– window size = 8

Sender: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Receiver: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

28

Window

Acks not received, times out and retransmits seq #0-7

Receiver willing to accept seq #0-7
Sender sending seq# 0-7 but different packets! Acks sent

Solution: seq # space must be large enough to cover both
sender + receiver windows. I.e., >= 2x window size

TCP

vumanfredi@wesleyan.edu 29

Main transport protocol used in Internet, provides
– mux/dmux: which packets go where
– connection-oriented, point-to-point

• 2 hosts set up connection before exchanging data, tear down after
• bidirectional data flow (full duplex)

– flow control: don’t overwhelm receiver
– congestion control: don’t overwhelm network
– reliable: resends lost packets, checks for and corrects errors
– in-order: buffers data until sequential chunk to pass up
– byte stream: no msg boundaries, data treated as stream

30

Sender Receiver

Network
Send
data

Receive
data

RFCs:
793,1122,1323,

2018, 2581

Using many techniques we already talked about

Sliding window
– congestion and flow control determine window size
– seq #s are byte offsets

Cumulative ACKs
– but does not drop out-of-order packets
– fast retransmit

• duplicate ACKs (3 of them) trigger early retransmit
– only one retransmission timer

• intuitively, associate with oldest unACKed packet
– timeout period: estimated

TCP is not perfect but works pretty well!
31

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Q: Why both seq #
and ack #? Could be

both sending data and
acking received data

vumanfredi@wesleyan.edu 32

33vumanfredi@wesleyan.edu

Sequence #s
– byte stream # of first byte

in segment’s data

Acknowledgements
– seq # of next byte

expected from other side
– cumulative ACK

Q: how receiver handles
out-of-order segments

– TCP spec doesn’t say
– up to implementer

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

vumanfredi@wesleyan.edu 34

User types ‘C’

Host ACKs receipt
of echoed ‘C’

Host ACKs receipt of ‘C’,
echoes back ‘C’
(’C’ is 1 byte long)

Simple nc scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

vumanfredi@wesleyan.edu 35

