Lecture 9: Transport Layer
Overview and UDP

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— homework 4 due Wed. at 11:59p
— Tu help sessions: now from 5-7p in Exley 113
— |s everyone signed up on piazza?

2. Headers and payloads
— recap

3. Transport layer
— overview
— multiplexing and demultiplexing
— User Datagram Protocol (UDP)

Headers and Payloads
RECAP

Headers and payloads

Link layer header
Network layer header

Transport (e.qg., TCP) header

App layer header

Each layer only looks at the header associated with that layer

Transport Layer
OVERVIEW

Why do we need a transport layer?

* Logical communication

- - between processes on
Application end hosts
Transport / Relieson, enhances,
network layer services
Network , o
\ * Logical communication
Link between end hosts
* |P header does not contain
Physical port #s

4

What problems must transport
layer address?

L e

application
<<} c DO
(o)
phy
network
netwy N data link |
data lin hysical |%
physical
ork -
K -
@
¢ p
5 q network [\
& ey data link
B = physical
‘ e
_hetworky s
data link [\e
=nhysical
network
data link
] physical o rorc]
T data link
physical

tio
networ
data link
physical

Why do we need a transport layer?

Transport layer services
Problem 1: no port #s in IP header
— how do pkts get from host to process on host?]L (De)Multiplexing

Problem 2: IP is best effort

—_—

— packets can be corrupted, dropped, duplicated,
reordered, delayed — Reliable data transfer
— pain for app developer to deal with]

Problem 3: IP gives no guidance about rate at
which to send packets

— sends whatever it receives immediately — Congestion, Flow control
— traffic can easily overwhelm network, host

—_

back into original messages

Problem 4: |P packets must be reassembled
Data stream
— pain for app developer to deal with

Why do we need a transport layer?

Transport layer services

Problem 1: no port #s in IP header
— how do pkts get from host to process on host?} (De)Multiplexing
Only service transport
Problem 2: IP is best effort | layer MUST provide!
— packets can be corrupted, dropped, duplicated, UDF, TCP
reordered, delayed — Reliable data transfer
— pain for app developer to deal with B TCP
Problem 3: IP gives no guidance about rate at
which to send packets n
— sends whatever it receives immediately __ Congestion, Flow control
— traffic can easily overwhelm network, host TCP

Data stream
TCP

back into original messages

Problem 4: |P packets must be reassembled }
— pain for app developer to deal with

Transport layer protocols on Internet

TCP: reliable, in-order delivery

— connection-oriented /¥ caneport
— congestion control Ny, B °
— flow control : et ga(:%: :‘E} -
— connection setup Py’ ¢ orc | o
UDP: unreliable, unordered delivery &4\ u:k
— connectionless %é T’aht;s:':':'(
— no-frills extension of best-effort IP _ | gt}: :E'i'; \
data link tio
Q: What services are not available g e QT
— delay guarantees g qg _ 6"""""“’" it
e \ <«

— bandwidth guarantees = é/ é/

Transport Layer

MULTIPLEXING AND
DEMULTIPLEXING

Transport layer

Transport protocols
— runin end systems

— provide logical communication
» between app processes running on different hosts

Send side

— breaks app messages into segments (TCP) or datagrams (UDP)
— passes to network layer

Receive side
— reassembles segments or datagrams into messages
— passes to app layer

Household analogy

12 kids in Alice’s house send letters to 12 kids in Bob’s house
— hosts = houses
— processes = kids

— app messages = letters in envelopes
— transport protocol = Ann and Bill who demux to in-house siblings

— network-layer protocol = postal service

Multiplexing and demultiplexing

Determines which packets go to which app

Mux at sender

Handle data from multiple
sockets, add transport header
(later used for demultiplexing)

application

transport

network
link
physical

applic

Demux at receiver __

Use header info to deliver
received segments to correct
 socket

application T % | socket

O process

How demultiplexing works

Host receives |P packets

— packet header contains
» source IP address
« destination IP address
— packet payload is

* one transport-layer segment or
datagram

— transport-layer header contains
» source port number
» destination port number

Host uses |P addresses & port
numbers to direct segment or
datagram to appropriate socket

32 bits -

source port # dest port #

other header fields

application
data
(payload)

Format of TCP/UDP
segment/datagram

Connection-oriented demultiplexing (TCP)

TCP socket identified by
4-tuple

1. source IP address

2. source port number

3. dest |IP address

4. dest port number
Demux

— receiver uses all four
values to direct segment
to appropriate socket

Server host

— may support many
simultaneous TCP sockets

— each socket identified by
its own 4-tuple

Web servers

— have different sockets for
each connecting client

— non-persistent HTTP will
have different socket for
each request

Connection-oriented demultiplexing (TCP)

IP address B

IP address A

application

application

IP address C

application

[| l_l|_‘Jl

anaport

3
3

ork

Fanspo

lin

k

network

ical

link

p |I
trangpor
netywork
lipnk
J physical

source IP,port: B,80
dest IP,port: A 9157

source IP,port: A 9157
dest IP, port: B,80

physical

source '!,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

3 segments, all destined to IP address B, dest port 80:

are demultiplexed to different sockets

Connection-oriented demultiplexing (TCP)

IP address B

threaded server

IP address A _ IP address C
application
application application
i |I n m]]
trangpor ranspo
netyork network
link link
physical

source IP,port: B,80
dest IP,port: A 9157

source IP,port: A 9157

source '!,port: C,5775

dest IP,port: B,80

dest IP, port: B,80

source IP,port: C,9157
dest IP,port: B,80

3 segments, all destined to IP address B, dest port 80:

are demultiplexed to different sockets

Connectionless demultiplexing (UDP)

UDP socket

— random host-local port # allocated

sock = socket (AF_ INET, SOCK DGRAM)
port# allocated: 9157

— when sending data into UDP socket, must specify
1. destination IP address
2. destination port #

Host receives UDP datagram
» checks destination port # in IP pkts with same dst |IP, port #

Y

UDP header on datagram but different src IP addr and/or

« directs UDP datagram to src port #s: will still be directed
socket with that port # to same socket at dst!

Connectionless demultiplexing (UDP)

server sock =

socket (AF INET,

sock? = SOCK DGRAM) sockl =
socket (AF INET, server sock.bind((socket (AF INET,
SOCK DGRAM) localhost, 6428)) SOCK DGRAM)

Port# allocated:9157 Port# allocated:5775

application

PD

44 1m

application application

source port: 6428 source port: ?

. dest port: 9157 l dest port: ?]
> le 4
source port: 9157 source port: 7 QQ: what are missing
dest port: 6428 dest port: ?

src/dst ports?

Looking forward

Start with UDP

— since protocol is much simpler to understand

Then look at TCP

— start with toy protocol to build up pieces we need for full protocol

Transport Layer
USER DATAGRAM PROTOCOL

UDP: User Datagram Protocol [RFC 768]

No frills Internet transport protocol
— best effort service
« UDP segments may be lost, delivered out-of-order to app

— to add reliable transfer over UDP
 add reliability at application layer
 application-specific error recovery!

— uses of UDP

« streaming multimedia apps (loss tolerant, rate sensitive)
« DNS, SNMP

Connectionless
— no handshaking between UDP sender, receiver
— each UDP segment handled independently of others

UDP Socket

Read/write packets Destination
— only packets with matching 2-tuple (dst ip IP3, Port3
and dst port) are pushed to application IP1.Port1, IP2,Port2,

IP3,Port3 1P3,Port3

Source 1

IP1,Port1,
IP1, Port1 IP3,Port3

“g Internet

Source 2
IP2, Port2

|

IP2,Port2,
IP3,Port3

Client/server socket interaction: UDP

Server running on serverlP Client running on clientlP
Create socket, bind it to port= x: Create socket, bind it to port = v:
serverSocket =

clientSocket =
socket(AF_INET,SOCK_DGRAM) socket(AF_INET,SOCK_DGRAM)

j 1

Create datagram with

Read datagram from
serverSocket / serverlP and port=x; send
l datagram via clientSocket

Write reply to serverSocket \
specifying clientlP, port =y Read datagram from clientSocket

1

Close clientSocket

Application example: UDP server

Python UDPServer

from socket import *
serverPort = 12000
> serverSocket = socket(AF_INET, SOCK_DGRAM)
bind socket to local port ind(("
e e 1000 —— serverSocket.bind((", serverPort))
print (“The server is ready to receive”)

create UDP socket

loop forever > while True:
Read from UDP socket into)
message, getting client's > message, clientAddress = serverSocket.recvirom(2048)
address (client IP and port) modifiedMessage = message.decode().upper()
send upper case string —— o
back to this client serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Application example: UDP client

Python UDPClient

» from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socketforserver | clientSocket = socket(AF _INET, SOCK DGRAM)
getuserkeyboardinput | message = raw_input(‘Input lowercase sentence:’)
clientSocket.sendto(message.encode(),
essage: send nto socket (serverName, serverPort))
modifiedMessage, serverAddress =
readsfc%f ,*;i‘ga;fﬁ;; rom— clientSocket.recvfrom(2048)
orint out received string > Print modifiedMessage.decode()

and close socket clientSocket.close()

include Python’s socket library

UDP datagram header

length, in bytes of
UDP datagram,
including header

32 bits

source port #
length < |

checksum

__ Why is there a UDP?

— NO connection

application establishment (which can
data add delay)
(payload) — simple: no connection

state at sender, receiver
— small header size

— no congestion control:
UDP datagram format UDP can blast away as

fast as desired

UDP error detection vs. recovery

Errors
— not just introduced during transmission over links
— can be introduced in memory, at router, at lower layer

UDP does not provide error recovery
— may drop datagram
— may pass datagram data to app with warning

UDP does provide error detection

— it's useful to know something damaged even if don't fix
— Q: How?
* Checksum

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in
transmitted datagram

Sender
1.

Views datagram contents,
including header fields and
user data, as sequence of
16-bit integers

 skip checksum field

Computes checksum

» adds 16-bit integers together
using 1s complement
arithmetic and then takes 1s
complement of result

Puts checksum value in UDP
checksum field

Receliver
1.

Computes its own checksum
over datagram including
checksum in UDP header

Result should equal all Os if
no errors

 NO: error detected
* YES: no error detected
 Q: can there still be errors?

Internet checksum example

Example: add two 16-bit integers

oo T

O-
1110 11001100110
1101 1 0101010101

wraparound (1) 1 0 1 1 1 011 10111011

| -
11101110111100
0001 00O010O0OO0O0OT11

Note: when adding numbers, a carryout from the most significant
bit needs to be added to the result

sum

10
checksum 01

Q: Why 1s complement? Why check for 0s? symming these
— for efficiency: computed very fast in hardware should give 0
— independent of machine endianness

Looking at UDP in Wireshark

» Frame 237: 143 bytes on wire (1144 bits), 143 bytes captured (1144 bits) on ir
| » Ethernet II, Src: JuniperN_1e:18:01 (3c:8a:b0:1e:18:01), Dst: 78:4f:43:73:43::
» Internet Protocol Version 4, Src: intdns.wesleyan.edu (129.133.52.12), Dst: wvn
v User Datagram Protocol, Src Port: 53 (53), Dst Port: 57332 (57332)

Source Port: 53

Destination Port: 57332

Length: 109

v Checksum: 0x0f73 [validation disabled]

[Good Checksum: Falsel
[Bad Checksum: Falsel]

[Stream index: 1]

» Domain Name System (response)

78 4f 43 73 43 26 3c 8a b0 1le 18 01 08 00 45 00 xXO0CSC&<. vuuuss E.
00 81 87 f4 00 00 3e 11 01 b3 81 85 34 0c 81 85 > sansdasn
0020 bb ae 00 35 df f4 00 6d Of 73 e6 72 81 80 00 01 ...5...m .S.r....
00 01 00 00 00 00 03 32 32 37 03 31 39 30 02 33 2 27.190.3
33 02 31 33 07 69 6e 2d 61 64 64 72 04 61 72 70 3.13.1in- addr.arp
61 00 00 Oc 00 01 cO Oc 00 Oc 00 01 00 01 51 8d Quusssss sununas Q.
00 2d 14 73 65 72 76 65 72 2d 31 33 2d 33 33 2d .-.serve r-13-33-

31 39 30 2d 32 32 37 85 62 6f 73 35 30 01 72 Qa 190-227. bos50.r.
63 6¢c 6f 75 64 66 72 6f 6e 74 03 6e 65 74 00 cloudfro nt.net.

