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Today

1.  Announcements
— exam wed!

2. Midterm overview
— exam format

3. TCP

— reliable data transfer
— connection management
— flow control



Midterm
OVERVIEW



Midterm overview

In class on Wednesday, Oct. 17
— closed book, closed notes
— covers material in lectures 1 to 12

Will not ask questions on
— probability

5 questions
— app layer short questions
— HTTP persistent vs. non-persistent connections
— transport layer short questions
— socket coding
— reliable data transport protocol



Problems 1 and 3

App layer and transport layer short questions
— 8 in total
— similar to review questions in book
— should only need to write a few sentences to answer



Problem 2

HTTP persistent vs. non-persistent connections
— review related homework question



Problems 4

Socket coding
— be able to write code to open, use, and close sockets
— differences between client and server code



Problem 5

Design a reliable data transfer protocol
— given channel characteristics design most efficient protocol
— be able to design reliable data transfer protocol like stop-and-wait
— know your timeline diagrams



TCP
RELIABLE DATA TRANSFER



Duplicate ACKs

Time-out period often relatively long
— long delay before resending lost packet

Duplicate ACKs indicate isolated loss

— rather than congestion causing many losses
» sender often sends many segments back-to-back

+ if segment is lost, likely many duplicate ACKs

» ACKs being received indicates some packets received at destination
since ACK sent for every packet: so not congestion

TCP fast retransmit

— if sender receives 3 ACKs for same data (triple duplicate ACKs)
» resend unacked segment with smallest seq #

— Q: why 3?
* pkts may just have been reordered otherwise
« likely that unacked segment lost, so don’t wait for timeout



TCP fast retransmit
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TCP
CONNECTION MANAGEMENT



Connection Management

Before exchanging data, sender/receiver handshake
— establish connection and connection parameters

— tear down connection when done

application

([ ]
connection state: ESTAB
Client connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at serverclient

network

sock = sock.connect((host, port))

application

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at serverclient
network

Server

conn, addr = server_sock.accept()



Agreeing to establish a connection

2-way handshake:

I\

Q: will 2-way handshake
always work in network?
— variable delays

__—®FESTAB — retransmitted messages

* e.g. req_conn(x)) due to
message loss

— message reordering
g[ H — can't see other side
e —

ch X
00s€ \req_conn(&L‘

—8 ESTAB
acc_conn(x)

ESTAB ¢




2-way handshake failure scenarios

choose x

retransmit
req_conn(x)

ESTAB

o

&,/

_cIient'
terminates

\req_conn(Q’

A ESTAB

acc_conn(x)

req_conn(x)

\

B connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

&

.

. 4

\req_conn(zl’
/‘

acc_conn(x)

~data(x+ 1L~

connection

_cIient
terminates

"~ x completes
\
reg_conn(x)

N

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)



TCP 3-way handshake

client state

LISTEN

choose init seq num, x
send TCP SYN msg

A

SYNSENT

v received SYNACK(x)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

/4}@

SYNbit=1, Seq=x

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

A\

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB



TCP 3-way handshake: FSM

A
SYN(x)
SYNACK(seq=y,ACKnum=x+1) _—
create new socket for SYN(seq=x)
communication back to client

' v

‘ \ SYNACK(seq=y,ACKnum=x-+1)
>
ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A




Look at the state of tcp connections

> netstat -ta

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 Y @ vmanfredismbp2.w.55777 1ga25s60-in-f5.1.https ESTABLISHED
tcp4 3 vmanfredismbp2.w.55736 162.125.34.6.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55717 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55716 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55715 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55714 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55713 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55668 wesfiles.wesleya.http CLOSE_WAIT
tcp4 vmanfredismbp2.w.55486 162.125.18.133.https  ESTABLISHED
tcp4 vmanfredismbp2.w.55322 162.125.18.133.https  ESTABLISHED
tcp4 vmanfredismbp2.w.55250 162.125.4.3.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55170 ec2-52-20-75-192.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55072 85.97.201.35.bc..https ESTABLISHED
tcp4 localhost.ipp * K LISTEN

tcpb localhost.ipp * K LISTEN

tcp4 vmanfredismbp2.w. 6.97.a86c¢.1ip4.st.https ESTABLISHED
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TCP: politely closing a connection

Client, server each sends TCP segment with FIN bit = 1
— respond to received FIN with ACK (ACK can be combined with own FIN)

client state J E server state
ESTAB e ESTAB

| clientSocket.close() \FINb.t 1
FIN WAIT 1 can no longer it=1, seq=x
send but can q\

v

receive data _—— CLOSE_WAIT
! ACKbit=1; ACKnum=x+1 can stil
FIN WAIT 2 wait for Sii'(\)’seer & send data
FINbit=1, seq=y LAST_ACK
TIIV‘I'ED_WAIT «— can no longer
T ~ send data
g | ACKDIt=1; ACKnUm=y+1
imed wai v
for 2*max > CLOSED

segment lifetime

CLOSED l




FIN segment in Wireshark

l 241 4.063493 vmanfredismpr wireless.we.. 40.97. 120 226 54 55017 - 443 [FI

~ A A_Aannn~na e AN NAN AN Clr JR N - S T AAaN~ Frres a____r

| - .
» Frame 241: 54 bytes on wire (432 bits), 54 bytes captured (432 b1ts) on 1nterface 0
» Ethernet II, Src: 78:4f:43:73:43:26 (78:4f:43:73:43:26), Dst: 129.133.176.1 (3c:8a:b0:1e:18:01)
» Internet Protocol Version 4, Src: vmanfredismbp2.wireless.wesleyan.edu (129.133.187.174), Dst: 40.97.120.226 (40.97.1:
©~ Transmission Control Protocol, Src Port: 55017 (55017), Dst Port: 443 (443), Seq: 3771, Ack: 6504, Len: 0
Source Port: 55017
Destination Port: 443
[Stream index: 5]
[TCP Segment Len: 0]
Sequence number: 3771 (relative sequence number)
Acknowledgment number: 6504 (relative ack number)
Header Length: 20 bytes
©~ Flags: 0x011 (FIN, ACK)
000. .... .... = Reserved: Not set
+:@ ... .... = Nonce: Not set
vass 0.0 «.u.. = Congestion Window Reduced (CWR): Not set
vass +0.. .... = ECN-Echo: Not set
vees 220, ..., = Urgent: Not set
«+1 .... = Acknowledgment: Set
. 0... = Push: Not set
.0.. = Reset: Not set
..0. = Syn: Not set
P aass ssss =aad = Fin: Set
[TCP Flags: sekkskokskokAsokkF ]
Window size value: 8192
[Calculated window size: 262144]
[Window size scaling factor: 32]
» Checksum: 0xe59d [validation disabled]
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