Lecture 13: Transport Layer

Flow and Congestion Control
COMP 332, Fall 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— exam wed!

2. Midterm overview
— exam format

3. TCP

— reliable data transfer
— connection management
— flow control

Midterm
OVERVIEW

Midterm overview

In class on Wednesday, Oct. 17
— closed book, closed notes
— covers material in lectures 1 to 12

Will not ask questions on
— probability

5 questions
— app layer short questions
— HTTP persistent vs. non-persistent connections
— transport layer short questions
— socket coding
— reliable data transport protocol

Problems 1 and 3

App layer and transport layer short questions
— 8 in total
— similar to review questions in book
— should only need to write a few sentences to answer

Problem 2

HTTP persistent vs. non-persistent connections
— review related homework question

Problems 4

Socket coding
— be able to write code to open, use, and close sockets
— differences between client and server code

Problem 5

Design a reliable data transfer protocol
— given channel characteristics design most efficient protocol
— be able to design reliable data transfer protocol like stop-and-wait
— know your timeline diagrams

TCP
RELIABLE DATA TRANSFER

Duplicate ACKs

Time-out period often relatively long
— long delay before resending lost packet

Duplicate ACKs indicate isolated loss

— rather than congestion causing many losses
» sender often sends many segments back-to-back

+ if segment is lost, likely many duplicate ACKs

» ACKs being received indicates some packets received at destination
since ACK sent for every packet: so not congestion

TCP fast retransmit

— if sender receives 3 ACKs for same data (triple duplicate ACKs)
» resend unacked segment with smallest seq #

— Q: why 3?
* pkts may just have been reordered otherwise
« likely that unacked segment lost, so don’t wait for timeout

TCP fast retransmit

Host A Host B
N/ \‘y |
N =

send_base = 92 ¥ [~ 5eq=92, 8 bytes of data

l [Seq=100, 2 f data
2 X

Restart timer,
send base =100 3} &
-]
5]
£

Fast retransmit

eq=100, 20 bytes of data
v v

fast retransmit after sender
receipt of triple duplicate ACK

TCP
CONNECTION MANAGEMENT

Connection Management

Before exchanging data, sender/receiver handshake
— establish connection and connection parameters

— tear down connection when done

application

([]
connection state: ESTAB
Client connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at serverclient

network

sock = sock.connect((host, port))

application

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at serverclient
network

Server

conn, addr = server_sock.accept()

Agreeing to establish a connection

2-way handshake:

I\

Q: will 2-way handshake
always work in network?
— variable delays

__—®FESTAB — retransmitted messages

* e.g. req_conn(x)) due to
message loss

— message reordering
g[H — can't see other side
e —

ch X
00s€ \req_conn(&L‘

—8 ESTAB
acc_conn(x)

ESTAB ¢

2-way handshake failure scenarios

choose x

retransmit
req_conn(x)

ESTAB

o

&,/

_cIient'
terminates

\req_conn(Q’

A ESTAB

acc_conn(x)

req_conn(x)

\

B connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

&

.

. 4

\req_conn(zl’
/‘

acc_conn(x)

~data(x+ 1L~

connection

_cIient
terminates

"~ x completes
\
reg_conn(x)

N

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

TCP 3-way handshake

client state

LISTEN

choose init seq num, x
send TCP SYN msg

A

SYNSENT

v received SYNACK(x)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

/4}@

SYNbit=1, Seq=x

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

A\

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

TCP 3-way handshake: FSM

A
SYN(x)
SYNACK(seq=y,ACKnum=x+1) _—
create new socket for SYN(seq=x)
communication back to client

' v

‘ \ SYNACK(seq=y,ACKnum=x-+1)
>
ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Look at the state of tcp connections

> netstat -ta

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 Y @ vmanfredismbp2.w.55777 1ga25s60-in-f5.1.https ESTABLISHED
tcp4 3 vmanfredismbp2.w.55736 162.125.34.6.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55717 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55716 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55715 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55714 a104-110-151-148 .https ESTABLISHED
tcp4 vmanfredismbp2.w.55713 al04-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55668 wesfiles.wesleya.http CLOSE_WAIT
tcp4 vmanfredismbp2.w.55486 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55322 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55250 162.125.4.3.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55170 ec2-52-20-75-192.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55072 85.97.201.35.bc..https ESTABLISHED
tcp4 localhost.ipp * K LISTEN

tcpb localhost.ipp * K LISTEN

tcp4 vmanfredismbp2.w. 6.97.a86c¢.1ip4.st.https ESTABLISHED

=E =E=======2=2=2 = =

1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

(SIS I CS B OS I O IIGS BG I OSBGOS I OV IIGCS BGS BSOS

TCP: politely closing a connection

Client, server each sends TCP segment with FIN bit = 1
— respond to received FIN with ACK (ACK can be combined with own FIN)

client state J E server state
ESTAB e ESTAB

| clientSocket.close() \FINb.t 1
FIN WAIT 1 can no longer it=1, seq=x
send but can q\

v

receive data _—— CLOSE_WAIT
! ACKbit=1; ACKnum=x+1 can stil
FIN WAIT 2 wait for Sii'(\)’seer & send data
FINbit=1, seq=y LAST_ACK
TIIV‘I'ED_WAIT «— can no longer
T ~ send data
g | ACKDIt=1; ACKnUm=y+1
imed wai v
for 2*max > CLOSED

segment lifetime

CLOSED l

FIN segment in Wireshark

l 241 4.063493 vmanfredismpr wireless.we.. 40.97. 120 226 54 55017 - 443 [FI

~ A A_Aannn~na e AN NAN AN Clr JR N - S T AAaN~ Frres a____r

| - .
» Frame 241: 54 bytes on wire (432 bits), 54 bytes captured (432 b1ts) on 1nterface 0
» Ethernet II, Src: 78:4f:43:73:43:26 (78:4f:43:73:43:26), Dst: 129.133.176.1 (3c:8a:b0:1e:18:01)
» Internet Protocol Version 4, Src: vmanfredismbp2.wireless.wesleyan.edu (129.133.187.174), Dst: 40.97.120.226 (40.97.1:
©~ Transmission Control Protocol, Src Port: 55017 (55017), Dst Port: 443 (443), Seq: 3771, Ack: 6504, Len: 0
Source Port: 55017
Destination Port: 443
[Stream index: 5]
[TCP Segment Len: 0]
Sequence number: 3771 (relative sequence number)
Acknowledgment number: 6504 (relative ack number)
Header Length: 20 bytes
©~ Flags: 0x011 (FIN, ACK)
000. = Reserved: Not set
+:@ = Nonce: Not set
vass 0.0 «.u.. = Congestion Window Reduced (CWR): Not set
vass +0.. = ECN-Echo: Not set
vees 220, ..., = Urgent: Not set
«+1 = Acknowledgment: Set
. 0... = Push: Not set
.0.. = Reset: Not set
..0. = Syn: Not set
P aass ssss =aad = Fin: Set
[TCP Flags: sekkskokskokAsokkF]
Window size value: 8192
[Calculated window size: 262144]
[Window size scaling factor: 32]
» Checksum: 0xe59d [validation disabled]

Il msnd wnommsmde s

3c 8a b0 1e 18 @1 78 4f 43 73 43 26 08 00 45 00 <..... x0 CsCé&..E.
00 28 76 59 40 00 40 06 e5 ff 81 85 bb ae 28 61 .(vY@.@.(a
78 e2 d6 €9 01 bb dd 11 e8 4a b0 93 7d 29 50 11 X.vssuss .J..})P.

20 00 e5 9d 00 00 B

