Lecture 11: Transport Layer Reliable Data Transfer and Seq #s

COMP 332, Fall 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University, and some material from Computer Networks by Tannenbaum and Wetherall.

Today

Announcements

- homework 5 due Wed. at 11:59p
- midterm in-class on Wed., Oct. 17

Recap

reliable data transport over channels with errors and loss

Pipelined protocols

- go-back-N
- selective repeat
- sequence numbers in practice

Reliable Data Transport CHANNELS WITH ERROR AND LOSS

rdt3.0: channels with errors and loss

Problems

- underlying channel may flip bits in packet
 - both data and ACKs may be garbled
- underlying channel can also lose packets
 - both data and ACKs
- checksum, seq. #, ACKs, retransmissions will be of help
 - ... but not enough

Solution: add countdown timer

- sender waits "reasonable" amount of time for ACK
 - retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost)
 - retransmission will be duplicate, but seq #'s already handles this
- receiver must specify seq # of pkt being ACKed

rdt3.0 sender

Why do nothing? Why not resend pkt0? Because sender doesn't know whether ack1 means pkt 0 garbled or pkt 1 duplicate received By not resending pkt 0, sender doesn't introduce potentially unnecessary (even if valid) traffic: saves bandwidth/

rdt3.0 in action

rdt3.0 in action

Reliable Data Transport PIPELINED PROTOCOLS

rdt3.0: stop-and-wait operation

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$
Total time

Get rid of stop-and wait

Use pipelining (aka sliding-window protocols), like in HTTP

- sender allows multiple, in-flight, yet-to-be-acknowledged pkts
 - send up to N packets at a time, unacked
 - range of seq #s must be increased
 - sender needs more memory to buffer outstanding unacked packets

Achieves higher link utilization than stop-and-wait!

Increased utilization with pipelining

$$J_{\text{sender}} = \frac{3L/R}{RTT + L/R} = \frac{.0024}{30.008} = 0.00081$$

3-packet pipelining increases utilization by factor of 3!

Total time

Pipelined protocols

Send N packets without receiving ACKs. How to ACK now?

Cumulative ACKs: Go-Back-N protocol

- sender
 - has timer for oldest unacked pkt
 - when timer expires: retransmit all unacked pkts
 - pkts received correctly may be retransmitted
- receiver only sends cumulative ack, doesn't ack pkt if gap

Selective ACKs: Selective Repeat protocol

- sender
 - has timer for each unacked pkt
 - when timer expires, retransmit only unacked pkt
 - only corrupted/lost pkts are retransmitted
- receiver sends individual ack for each pkt

How pipelining protocols work

Use sliding window

- how sender keeps track of what it can send
- window: set of N adjacent seq #s
 - only send packets in window

If window large enough, will fully utilize link

Pipelined Protocols GO-BACK-N

Go-Back-N: sender

Window of up N consecutive unacked pkts allowed

- ACK(n) is cumulative ACK
 - ACKs all pkts up to, including seq # n
 - may receive duplicate ACKs (see receiver)
- timer for oldest in-flight pkt
 - timeout(n): retransmit packet n and all higher seq # pkts in window

Go-Back-N: sender FSM

```
Send as long as pkt
                                 rdt_send(data)
                                                                    within window
                                 if (nextseqnum < base+N) {
                                   sndpkt[nextseqnum] = make pkt(nextseqnum,data,chksum)
                                   udt send(sndpkt[nextseqnum])
                                   if (base == nextseqnum)
                                     start timer
                                   nextsegnum++
                                 else refuse data(data)
                                                                  Resend up to
          base=1
                                                                nextseqnum on
           nextsegnum=1
                                                    timeout
                                                                     timeout
                                                    start timer
                                    Wait
                                                    udt send(sndpkt[base])
   Ignore corrupt
                                                    udt send(sndpkt[base+1])
rdt_rcv(rcvpkt) && corrupt(rcvpkt)
                                                    udt send(sndpkt[nextseqnum-1])
            Λ
                                 rdt_rcv(rcvpkt) &&
                                   notcorrupt(rcvpkt)
                                 base = getacknum(rcvpkt)+1
                                 If (base == nextseqnum)
                                   stop_timer
                                                   Cumulative ack: move
                                  else
                                                      base to ack# + 1
                                   start timer
```

Go-Back-N: receiver FSM

Out-of-order pkt and all other cases

- discard: no receiver buffering!
- re-ACK pkt with highest in-order seq #

Correct pkt with highest in-order seq

- send ACK, may be duplicate ACK
- need only remember expectedseqnum

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(expe

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)
expectedseqnum++

Retransmit windowsize worth of packets for 1 error large window size ⇒ large delays

Go-Back-N in action

Go-Back-N summary

Pros

- no receiver buffering
 - saves resources by requiring packets to arrive in-order
 - avoids large bursts of packet delivery to higher layers
- simpler buffering & protocol processing
 - can easily detect duplicates if out-of-sequence packet is received

Cons

- wastes capacity
 - on timeout for packet N sender retransmits from N all over again (all outstanding packets) including potentially correctly received packets

Tradeoff: buffering/processing complexity vs. capacity (time vs. space)

Pipelined Protocols SELECTIVE REPEAT

Selective repeat

Rather than ACK cumulatively, ACKs selectively

Receiver

- individually ACKs all correctly received pkts
- buffers pkts, as needed, for eventual in-order delivery to upper layer

Sender

- only resends pkts for which ACK not received
- sender timer for each unACKed pkt

Sender window

- N consecutive seq #s
- limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

Receiver view of seq #s

Selective repeat sender

Event: data from above

 action: if has next available seq # in window, send packet, start timer

Event: timeout(n)

action: resend packet n, restart timer

Event: ACK(n) in [sendbase, sendbase + N]

- action
 - mark packet n as received
 - if n is smallest unACKed packet
 - advance window base to next unACKed seq #

Selective repeat receiver

Event: pkt n in [rcvbase, rcvbase+N-1]

- action:
 - send ACK(n)
 - out-of-order
 - buffer
 - in-order
 - deliver (also deliver buffered, in-order pkts)
 - advance window to next not-yet-received pkt

Event: pkt n in [rcvbase-N, rcvbase-1]

– action: send ACK(n)

Event: otherwise

action: ignore

Selective repeat in action

Selective repeat: dilemma

Example

- seq #'s: 0, 1, 2, 3 and window size=3

No problem...

Selective repeat: dilemma

Example

- seq #'s: 0, 1, 2, 3 and window size=3

Problem: duplicate data accepted as new: receiver sees no difference in two scenarios!

Q: what is relationship between seq # size and window size to avoid problem in (b)?

Selective repeat summary

Q: When is selective repeat useful? When channel generates errors frequently

Pros

- more efficient capacity use
 - only retransmit missing packets

Cons

- receiver buffering
 - to store out-of-order packets
- more complicated buffering & protocol processing
 - to keep track of missing out-of-order packets

Tradeoff again between buffering/processing complexity and capacity

Sequence numbers HOW USED IN PRACTICE

Sequence #s in practice

How large must seq # space be?

depends on window size

Example

- seq # space = [0, 2⁴-1]
- window size = 8

Window

Sender:

0123456701234567

Acks not received, times out and retransmits seq #0-7

Receiver: 0123456701234567

Acks sent

Receiver willing to accept seq #0-7

Sender sending seq# 0-7 but different packets!

Solution: seq # space must be large enough to cover both sender + receiver windows. I.e., >= 2x window size

Sequence #s in practice

What are they counting?

- bytes, not packets
 - sending packets but counting bytes
 - so seq #s do not increase incrementally

Sequence # space

- finite
 - e.g., 32 bits so 0 to 2³²-1 values
 - must wrap around to 0 when hit max seq #
- TCP initial seq # is randomly chosen from space of values
 - security (harder to spoof)
 - to prevent confusing segments from different connections
 - different operating systems set differently: can fingerprint machines