Lecture 11: Transport Layer
Reliable Data Transfer and Seq #s

COMP 332, Fall 2018
Victoria Manfredi

"‘—,‘:I" ‘-\ I"' f\' N
\'\u?# a

Uu N | V I T Y

»
»®
‘w

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

Announcements
— homework 5 due Wed. at 11:59p
— midterm in-class on Wed., Oct. 17

Recap

— reliable data transport over channels with errors and loss

Pipelined protocols
— go-back-N
— selective repeat
— sequence numbers in practice

Reliable Data Transport

CHANNELS WITH ERROR AND
LOSS

rdt3.0: channels with errors and loss

Problems
— underlying channel may flip bits in packet
* both data and ACKs may be garbled

— underlying channel can also lose packets
* both data and ACKs

— checksum, seq. #, ACKs, retransmissions will be of help
* ... but not enough

Solution: add countdown timer
— sender waits “reasonable” amount of time for ACK
* retransmits if no ACK received in this time

— if pkt (or ACK) just delayed (not lost)
» retransmission will be duplicate, but seq #'s already handles this

— receiver must specify seq # of pkt being ACKed

Why do nothing ? Why not resend pkt0? Because sender doesn’t

rdt3.0 Sender know whether ack1 means pkt O garbled or pkt 1 duplicate received

By not resending pkt 0, sender doesn’t introduce potentially
unnecessary (even if valid) traffic: saves bandwidth

Sender rdt_send(data)

\ sndpkt = make_pkt(0, data, checksum) rdt_rcv(rcvpkt) &&

\ udt_send(sndpkt) (corrupt(rcvpkt) i isACK(rcvpkt,1))
rdt_rcv(rcvpkt) y start_timer A
rat_revircevpxt i

A Wait for timeout
Ca!é)otg J udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer ,
stop_timer
, Wait for
timeout call 1 from
udt_send(sndpkt) above
start_timer rdt_rcv(rcvpkt)

rdt_send(data) A

rdt_rcv(rcvpkt) && sndpkt = make_pkt(1, data, checksum)

(corrupt(rcvpkt) || isACK(rcvpkt,0)) udt_send(sndpkt)
N start_timer

rdt3.0 in action

sender receiver
send pktO ktO
\\ rcv pkto
ac send ack0
rcv ackO /D/
send pktl \K
rcv pktl
ack send ackl
rcv ackl
send pkt0 \ito\‘
rcv pktO
ack send ack0
(a) no loss

sender receiver

send pkt0 ktO
\\ rcv pkt0

ac send ackO
send pkt
p \Kﬂx

6 t/meout_
resend pktl \%‘
rcv pktl

ack send ackl
rcv ackl
send pkt0 \WO\‘
rcv pktO
ack send ackO

(b) packet loss

rdt3.0 in action

sender receiver

send pkt0 ktO
\\, rcv pktO

ac send ack0
rcv ackO /ﬂ/
send pktl_ \W\‘
rcv pktl

a1 —" send ack1

loss
‘ t/meout_

resend Pkt —a1__ roy pktt
(detect duplicate)

rcv ackl ack send ackl
send pkt0 \k‘
rcv pktO
ack send ackO

(c) ACK loss

sender receiver
send pkt0 ktO
ac send ack0
rcv ackO /Q/
send pktl_ \m\‘
rcv pktl
send ackl
ack1
6 t/meout
resend pkl’i kt1 rev pktl
I'Cv acC (detect duplicate)
send pkt0 IO send acﬁ

ack

\?

rcv pkt0
ack sencll3 ack0

(d) premature timeout/ delayed ACK

Reliable Data Transport
PIPELINED PROTOCOLS

rdt3.0: stop-and-wait operation

sender receiver

1st packet bit transmitted, t=0 _
last packet bit transmitted, t = L/ R g

— 1st packet bit arrives

RTT —last packet bit arrives,
send ACK

ACK arrives, send nex&_ _____________________
ket t=RTT+L/R
packet, \\

R v
Time spent sending stuff
L/R 008
U — - —
sender™ mrr s {77~ 30008 0.00027
Total time

Problem: how to maintain high link utilization?

Get rid of stop-and wait

Use pipelining (aka sliding-window protocols), like in HTTP

— sender allows multiple, in-flight, yet-to-be-acknowledged pkts
» send up to N packets at a time, unacked

* range of seq #s must be increased
» sender needs more memory to buffer outstanding unacked packets

s

data packet— data packets—» "
A

<+— ACK packets

Stop and wait Pipelined

Achieves higher link utilization than stop-and-wait!

Increased utilization with pipelining

3_packet p|pe||n|ng sender receiver

1st packet bit transmitted, t=0 . ____________________
last bit transmitted, t =L/ R g

1st pkt bit arrives

—last pkt bit arrives, send ACK

last bit of 2nd pkt arrives, send ACK
—last bit of 3 pkt arrives, send ACK

RTT

ACK arrives, send next y
packet, t=RTT+L/R [

Time spent sending stuff

3L/R 0024 3-packet pipelining
U conder= - — = 0.00081 | lizat
sender 30.008 . increases utilization by
RTT+L/R factor of 3!

Total time

Pipelined protocols

Send N packets without receiving ACKs. How to ACK now?

Cumulative ACKs: Go-Back-N protocol

— sender
» has timer for oldest unacked pkt
* when timer expires: retransmit all unacked pkts
» pkts received correctly may be retransmitted

— receiver only sends cumulative ack, doesn’t ack pkt if gap

Selective ACKs: Selective Repeat protocol

— sender
 has timer for each unacked pki
* when timer expires, retransmit only unacked pkt
 only corrupted/lost pkts are retransmitted

— receiver sends individual ack for each pkt

How pipelining protocols work

Use sliding window

— how sender keeps track of what it can send

— window: set of N adjacent seq #s
« only send packets in window

nexfse num
send_ base g dlready

ack’'ed

I I I sent, not
yvet ack’'ed
wmdow size

usable, not
yet sent

I] not usable

If window large enough, will fully utilize link

Pipelined Protocols
GO-BACK-N

Go-Back-N: sender

Window of up N consecutive unacked pkts allowed

— ACK(n) is cumulative ACK
» ACKs all pkts up to, including seq # n
* may receive duplicate ACKs (see receiver)
— timer for oldest in-flight pkt
 timeout(n): retransmit packet n and all higher seq # pkts in window

send_base nexfsegnum dlready Usable. not
. i ack’ed yet sent
AL CCECCCCTURTUIIONAND [smmtmeraa [orosccs
* — window size —2

N

Go-Back-N: sender FSM

base=1

Ignore corrupt
rdt_rcv(rcvpkt) && corrupt(rcvpkt)

A

‘e
3
3
‘e
-

rdt_send(data) Send as long as pkt

if (nextsegnum < base+N) { within window
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnuml)
if (base == nextsegqnum)
start_timer
nextseqgnum-++

}

else refuse_data(data)

Resend up to

C R _ nextseqnum on
timeout

A start_timer timeout
udt_send(sndpkt[base])
Ca udt_send(sndpkijbase+1])

U udt_send(sndpkt[nextseqgnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nexiseqnum)

stop_timer Cumulative ack: move

else
start timer base to ack# + 1

Go-Back-N: receiver FSM

Out-of-order pkt and all other cases Correct pkt with highest in-order seq #
— discard: no receiver buffering! — send ACK, may be duplicate ACK
— re-ACK pkt with highest in-order seq # — need only remember expectedseqnum
\ default
udt_send(sndpkt) rdt_rcv(rcvpkt)
(_7 && notcorrupt(rcvpkt)

________ && hasseqnum(rcvpkt,expectedsegnum)
A Bl 3 extract(rcvpkt,data)
expectedsegnum=1 deliver_data(data)

sndpkt = make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

Retransmit windowsize worth of packets for 1 error
large window size = large delays

Go-Back-N in action

sender window (N=4) sender receiver

5678 send pkt0

FEEE) 567 3 send pktl \ .

5678 send pkt2- receive pkt0, send ackO

5678 send pkt3 \X/oss receive pktl, send ackl
(wait)

receive pkt3, discard,

ofEE¥ 678 rcv ack0, send pkt4 (re)send ackl

0 1pEEEI678 rcv ackl, send pkt5 receive pktd4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ack1l

ignore duplicate ACK

pkt 2 timeout |

W12 3 45 A send pkt2

iR12 3 45 send pkt3 _

W12 3 45 A send pkt4 rcv pkt2, deliver, send ack2
0 1 EN¥¥ 7 8 send pkt5 rcv pkt3, deliver, send ack3

rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

W

Go-Back-N summary

Pros

— no receiver buffering
* saves resources by requiring packets to arrive in-order
 avoids large bursts of packet delivery to higher layers

— simpler buffering & protocol processing
» can easily detect duplicates if out-of-sequence packet is received

Cons

— wastes capacity

» on timeout for packet N sender retransmits from N all over again (all
outstanding packets) including potentially correctly received packets

Tradeoff: buffering/processing complexity vs. capacity
(time vs. space)

Pipelined Protocols
SELECTIVE REPEAT

Selective repeat

Rather than ACK cumulatively, ACKs selectively

Receiver
— individually ACKs all correctly received pkts
— buffers pkts, as needed, for eventual in-order delivery to upper layer

Sender
— only resends pkts for which ACK not received
— sender timer for each unACKed pkt

Sender window

— N consecutive seq #s
— limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

send_base hextsegnum

already usable, not
: ack’ed yet sent
(00T 0 e
g S window size 4
i N

Sender view of seq #s

out of order

acceptable
(buffered) but ¥ (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂIIHIIIIIIIIIIIIIIII |ogecissgt [et

L vindow size—4

N
rcv_base

Receiver view of seq #s

Selective repeat sender

data from above

if has next available seq # in window, send packet, start
timer

timeout(n)
resend packet n, restart timer

ACK(n) in [sendbase, sendbase + N]

* mark packet n as received

» if nis smallest unACKed packet
— advance window base to next unACKed seq #

Selective repeat receiver
pkt n in [rcvbase, rcvbase+N-1]

» send ACK(n)

 out-of-order
— buffer

 in-order
— deliver (also deliver buffered, in-order pkts)
— advance window to next not-yet-received pkt

pkt n in [rcvbase-N, rcvbase-1]
send ACK(n)

otherwise
ignore

Selective repeat in action

sender window (N=4) sender

NP4 5678
(NP4 567 8

EPEY: 5678
0 12 3 XA
]

0] 1 2 3 4 R
0 1EENI6 7 8

R12 345 FhE

L2 3 4 5 S

R12 3 45 Wl
R12 3 45 Wl

send pkt0

send pktl \
send pkt2_

send pkt3 \X loss

(wait)

rcv ack0, send pkt4
rcv ackl, send pkt5

record ack3 arrived

pkt 2 timeout |

send pkt2

record ack4 arrived

record ack5 arrived /

Q: what happens
when ack?2 arrives?

receliver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, buffer, send ack3

receive pkt4, buffer, send ack4

receive pkt5, buffer, send ack5

receive pkt2
deliver pkt2, pkt3, pkt4, pkt5
send ack?2

Selective repeat: dilemma

Example
— seq #s:0, 1, 2, 3 and window size=3

sender window receiver window
(after receipt) (after receipt)

A3 01220

PEWAA3 012 Rk NI 0 1 2

OENA 0 12 —pkt2 — 0 1EENI12
7 5 0 1 2T 2

0 IO 12 4Dk T

01Kk 12

—>» Will accept packet
with seq number 0

No problem...

Selective repeat: dilemma

Example
— seq #s:0, 1, 2, 3 and window size=3
sender window receiver window
(after receipt) (after receipt)
RERA: 0 1 2—RKt0
IGERA3 01 2pktl 1)1 2 3[iK
EEF3012 ~:2kt27 0 176N 12
X 0 1 2ENE 2
XA/
timeout, retransmit pkt0 X T
0 12 (R

—— Will accept packet
with seq number 0

Problem: duplicate data accepted as new:
receiver sees no difference in two scenarios!

Q: what is relationship between seq # size and
window size to avoid problem in (b)?

Selective repeat summary

Q: When is selective repeat useful?
When channel generates errors frequently

Pros

— more efficient capacity use
 only retransmit missing packets

Cons

— receiver buffering
 to store out-of-order packets

— more complicated buffering & protocol processing
» to keep track of missing out-of-order packets

Tradeoff again between buffering/processing
complexity and capacity

Sequence numbers
HOW USED IN PRACTICE

Sequence #s in practice

How large must seq # space be?
— depends on window size

Example
— seq # space = [0, 24-1]
— window size = 8
Window
Sender: |01234567/01234567

Acks not received, times out and retransmits seq #0-7

Receiver: 01234567/01234567
\ J

| Receiver willing to accept seq #0-7
Acks sent Sender sending seq# 0-7 but different packets!

Solution: seq # space must be large enough to cover both sender
+ receiver windows. |.e., >=2x window size

Sequence #s in practice

What are they counting?

— bytes, not packets
» sending packets but counting bytes
* SO seq #s do not increase incrementally

Sequence # space
— finite
* e.g., 32 bits so 0 to 232-1 values
* must wrap around to 0 when hit max seq #

— TCP initial seq # is randomly chosen from space of values
 security (harder to spoof)
 to prevent confusing segments from different connections
- different operating systems set differently: can fingerprint machines

