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Abstract— We consider the problem of configuring sen-
sors in an adaptive sensor network being used to monitor
meteorological features. One way to decide future sensor
configurations is to base them on information currently
being collected. For instance, if a meteorological sensor
network is being used to monitor storms in Oklahoma,
then the sensors could be dynamically configured based
on the predicted storm locations. While Kalman filters
and their extensions are commonly used for prediction and
tracking, they have been primarily applied to objects with
known or fixed dynamics such as missiles or people. We
explore the advantages and limitations of using Kalman
filters to track objects with nonstationary dynamics (e.g., a
storm can grow in size). In particular, we focus on tracking
meteorological features over time with the objective of
using this information to determine where radars should
focus their sensing. We present results for tracking storm
cells comparing least-squares regression with Kalman filter
and switching Kalman filter methods. Our results show
that on average the Kalman filter methods better predict
the future location of a storm centroid than does a
least-squares regression algorithm currently in use for
meteorological storm tracking.

I. INTRODUCTION

A sensor network is comprised of sensors collecting
data in an environment. An adaptive sensor network is
a sensor network in which the sensor configurations can
be changed, either by users or under system control. For
example, the network might change the frequencies at
which measurements are taken, or change the locations
where in situ or remotely sensed measurements are taken.
The ability to dynamically change sensor configurations
provides a great deal of flexibility in how, when, where,
and what information is collected. The utility of this
adaptability is most apparent when the sensor network’s

resources are limited, such as when all locations cannot
be sensed all of the time.

One approach for determining future sensor configu-
rations is to base them on information currently being
collected or that has been collected in the past. For
instance, suppose an adaptive radar network is being
used to monitor storms in Oklahoma. The future paths
of the storms being monitored can be predicted based
on current and previous monitored storm data. Then if a
storm is predicted at a certain latitude and longitude in
five minutes, the radars can be configured to scan that
location at that time.

In this paper we examine the problem of tracking
storm cells over time with the objective of using current
and past observations to intelligently determine where
radars should focus their sensing. The context for this
research is the CASA project (Collaborative Adaptive
Sensing of the Atmosphere) [31]. Although the CASA
distributed radar network will monitor a variety of mete-
orological features, including tornadoes, storm cells and
shear, this paper focuses only on tracking storm cells.
We note that our focus on tracking only storm cells
is due to a lack of track data for tornadoes and other
meteorological features. Tornado tracking and prediction
would be very interesting and we hope that this work can
be extended to such problems.

This paper examines the use of the Kalman filter
and the switching Kalman filter for tracking storm
cells. There are several advantages to using Kalman
filters. First, prediction using the basic Kalman filter
is extremely fast and requires little memory. This is
essential for the real-time requirements of the CASA
system. Second, an error estimate is associated with each
prediction. Third, these predictions can be computed



recursively, bounding the time and memory needed for
computation. While the Kalman filter and its extensions
are commonly used for prediction and tracking, they
have been primarily applied to objects with known or
fixed dynamics such as missiles or people. In order to use
Kalman filters to track storms (or other meteorological
features), several potential problems must be addressed.
First, storms can change in size and intensity; they can
also split into separate storms, or merge with other
storms. Second, different storms do not necessarily have
the same dynamics and an individual storm’s dynamics
will likely not satisfy the linear-Gaussian assumption
of the Kalman filter. Thus, one of the goals of this
paper is to examine the performance of the Kalman
filter for tracking meteorological features. Our results
show that on average the Kalman filter methods better
predict the future location of a storm centroid than does
a least-squares regression algorithm currently in use for
meteorological storm tracking.

The rest of this paper is organized as follows. Section
2 gives background on the prediction methods we use.
Section 3 reviews current tracking methods. Section 4
formulates the problem we are addressing and describes
our Kalman filter-based approach. Section 5 presents
experimental results for storm cell tracking comparing
least-squares regression, Kalman filter, and switching
Kalman filter methods. Finally, Section 6 summarizes
important issues identified in this project and Section 7
outlines future work.

II. BACKGROUND

This section provides a brief review of the graphical
models framework, and explains the basics of Kalman
filters, switching Kalman filters, and inference.

A. Graphical Models

See [20], [27] for a more comprehensive treatment of
graphical models. A graphical model efficiently encodes
a joint probability distribution using a graph. Nodes in
the graph represent random variables; edges in the graph
capture dependencies between variables. Based on the
dependencies being encoded, edges may be directed,
as in a Bayesian network (BN), or undirected as in
a Markov field. Each node that represents a discrete
random variable has an associated conditional probability
table (CPT). Each node that represents a continuous
random variable has an associated conditional probability
distribution (CPD). For all possible node and parent
values, the CPT or CPD for a given node contains the
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Fig. 1. DBN formulation of the Kalman filter. X represents state
and Y represents observations. Clear nodes are hidden and shaded
nodes are observed.

probability that the node has some value conditioned on
a set of values for its parents.

The Kalman filter and switching Kalman filter can be
represented by models in one class of directed graphical
models, specifically dynamic Bayesian networks (DBN).
In a DBN, the values of the variables change over time
according to a (probabilistic) transition model; while the
values of the variables change, the transition model does
not. A DBN can be thought of as a BN repeated for
multiple time steps, with additional edges to connect
variables at time t with variables at time t + 1. In
both BNs and DBNs, the problem of inference is to
determine the probability distribution for a query variable
(or variables) given some evidence. For instance, a
DBN with variables x and y could be queried for the
probability that variable x takes on some value at time
t given observed values of y for time steps 1 to t.

B. Kalman Filter

See [11], [20], [27] for a more comprehensive treat-
ment of Kalman filters. Kalman filters (KF) have tradi-
tionally been used in tracking. Unlike in least-squares
regression, the KF maintains a state representation that
is updated on each timestep. This makes the KF a type
of state-space model. In a KF, the true location xt of the
object is assumed hidden and is modeled as a Gaussian
random variable. Noisy observations yt of the hidden
state are assumed available. Transitions from one hidden
state to another are modeled with a linear Gaussian
function: the next location xt+1 is a linear function of the
current location xt plus some Gaussian noise wt where
w ∼ N [0, Q]. Observations are also assumed to be a
linear function of the hidden state plus some Gaussian
noise vt where v ∼ N [0, R] and y1 ∼ N [µ, Σ]. That is,

xt+1 = Axt + wt

yt = Bxt + vt

Using the observations yt, the KF computes the prob-
ability of state xt given the observations up to time t,
that is P (xt | y1, . . . ,yt). This is called filtering. The



probability of a future state xt+k given the current state
xt, that is P (xt+k | xt) can also be computed. This
is called prediction. Finally, given future observations
up to time t + k, the probability of the state at time t,
P (xt | y1, . . . ,yt+k), can be computed. This is called
smoothing. Filtering, prediction, and smoothing are all
types of inference.

One of the major advantages of the KF is that the
number of parameters needed to represent the state space
does not explode as more observations are acquired.
This is because the KF models the state as a Gaussian
random variable and state transitions as a linear Gaussian
function. Consequently, the state remains a Gaussian
random variable, requiring only that the mean and the
covariance be stored. This permits the KF to be com-
pactly formulated using recursive updates. However, the
dynamics of the object being tracked may not exactly
satisfy the linear Gaussian assumption. For instance,
the noise in the observations may not be Gaussian, or
the object may be moving in a nonlinear fashion. The
extended Kalman filter, the unscented Kalman filter, and
the switching Kalman filter address the assumption of
linear dynamics while particle filters additionally address
the assumption of Gaussian noise. Figure 1 shows the
DBN representation for the KF.

C. Switching Kalman Filter

See [2], [6], [12], [19] for a more comprehensive
treatment of switching Kalman filters. Switching Kalman
filters (SKF), also known as jump Markov linear systems,
maintain a state representation that is updated on each
timestep. Like with the KF, this also makes the SKF a
type of state-space model. The basic difference between
the SKF and KF is that the SKF can track objects
with nonlinear dynamics while the KF can only track
objects with linear dynamics. For instance, suppose that
a KF is being used to track an object and the object
is moving according to a dynamical model that can
be approximated by the KF. Suppose that something
then causes the dynamics of the object’s movement to
change, such as having to avoid an obstacle. A KF
will initially predict poorly since the dynamics of the
object have changed and a single KF can only encode
one dynamical model. If it were possible, however, to
recognize (or predict) when the object’s dynamics were
about to change, a different KF (encoding the new
dynamics) could be used to track the object at that point.
The SKF attempts to do exactly that. Essentially, an SKF
computes a piece-wise linear approximation of the path
of an object moving with nonlinear dynamics. In an SKF,
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Fig. 2. DBN formulation of the switching Kalman filter. S represents
switches, X represents state, and Y represents observations. Clear
nodes are hidden and shaded nodes are observed.

the value of a switch variable indicates the particular
KF being used on each time step. Like KFs, SKFs can
also be formulated as a DBN. Figure 2 shows the DBN
representation for the SKF.

In an SKF, both the values of the state variable X
and the values of the switch variable S are unknown.
Thus, the KF that is generating observations at a given
timestep is unknown. As a consequence, unlike in the
KF, the problem of inferring the switch node or hidden
state values in a SKF is intractable. For example, suppose
we are observing an object whose dynamics can be
described by switching among n KFs. At timestep 1,
it is unknown which KF generated the observation, so
the state distribution for each KF must be maintained,
giving a belief state of size n. At timestep 2, which KF
generated the observation is again unknown. Because the
KF for timestep 1 is also unknown, the belief state is
now of size n2. Consequently, at timestep T , the belief
state will be of size nT . Thus, inference based on an
exact state description is intractable for SKFs. Various
approximate inference techniques have, however, been
developed to address the problem of inference in SKFs
and in general. We will focus on a method called the
Generalized Pseudo Bayesian Algorithm [2], [12].

D. Generalized Pseudo Bayesian Algorithm

See [2], [12] for a more comprehensive treatment of
the Generalized Pseudo Bayesian algorithm. The Gen-
eralized Pseudo Bayesian algorithm is an approximate
inference method for the SKF. The essential idea of
many of the approximate inference methods for SKFs
is that if the values of the switch variables in the SKF
were known, then the belief state would no longer be
exponential in size and the Kalman filter equations could
be used to efficiently compute the values of the state
variables.

In comparison, rather than explicitly estimating switch



node values, the Generalized Pseudo Bayesian algorithm
works by weighting and summing over the hidden state
values of each Kalman filter for those values that are
more than k timesteps old. The weights are the probabil-
ities that each Kalman filter generated the observation k
timesteps ago. The number of timesteps k can be chosen,
leading to an order k Generalized Pseudo Bayesian
algorithm. Of course, the larger the k, the greater the
cost of inference. Suppose k = 2 and let xij be the
belief state if Kalman filter i is used on timestep t − 1
and Kalman filter j is used on timestep t, let V ij be the
corresponding covariance, and let W ij be the probability
that the observation at timestep t − 1 was generated
using Kalman filter i and the observation at timestep
t was generated using Kalman filter j. Then the order
two generalized pseudo-Bayesian algorithm works by
“collapsing” over the means and covariances two time
steps ago as follows.

(xj , V j) = Collapse(xij , V ij , W ij)

xj =
∑

i

W ijxij

V j =
∑

i

W ijV ij +
∑

i

W ij(xij − xj)(xij − xj)′

Other approximate inference methods for the SKF be-
sides the Generalized Pseudo Bayesian algorithm include
variational inference, sampling methods, and a Viterbi
algorithm [20], [24].

III. RELATED WORK ON TRACKING

We distinguish general statistical tracking techniques
from storm tracking algorithms which may have a
statistical foundation. Storm tracking methods can be
divided into extrapolation and/or statistical algorithms,
and other more knowledge-intensive algorithms. Ex-
trapolation algorithms use deterministic linear models
and can be loosely divided into centroid methods and
correlation methods. Centroid methods work by identi-
fying and tracking features associated with storm cells.
The extrapolation algorithms have low complexity; their
disadvantages are that they track the storm cell rather
than the larger storm, resulting in less accurate long-
term predictions, and that they have difficulty identifying
when and how storms split.

The SCIT Algorithm [10] is one example of an
extrapolation algorithm. It uses linear-least squares over
the last five data points to predict storm locations; data
points are the centroid locations of the storm cell being
tracked. The TITAN methodology of [4] is another
extrapolation algorithm, but it also uses cross-correlation.

More knowledge-intensive algorithms for storm tracking
include the Gandolf system developed by [25] which
treats storm cells as objects and then models the me-
teorologic evolution of each object; and the Growth and
Decay Storm Tracker [29] which focuses on tracking the
encompassing storm using an elliptical filter, rather than
tracking a storm cell.

Unlike the approaches discussed above, rather than
working with storm centroids, [13], [14] work with radar
images. Given a sequence of weather images (e.g., radar
reflectivity), [13], [14] first use K-means to identify
storm clusters at different levels of granularity. The
motion estimates for clusters in an image at time t
are then computed by finding the corresponding regions
of pixels for the image at time t + 1 that minimize
error. These estimates are then smoothed using a Kalman
filter. Computing these estimates at different levels of
granularity has the advantage of permitting both longer-
term and shorter-term forecasts.

In comparison, the Ensemble Kalman filter [5], [9],
[18], [22] maintains a state representation of the atmo-
sphere and evolves the state according to atmospheric dy-
namics. A single state consists of (latitude, longitude)
and the accompanying features for that location such
as temperature and surface pressure for different atmo-
spheric levels. Because the state represents the atmo-
sphere, the size of the state vector is large, and estimat-
ing the covariance using the standard Kalman filter is
computationally expensive. To address this, ensemble-
based techniques like the Ensemble Kalman filter were
developed in which an ensemble of trajectories are used
to estimate the covariance. Unlike the Kalman filter,
the Ensemble Kalman filter can approximate nonlinear
dynamics. Increasing the number of ensemble members
in the Ensemble Kalman filter decreases the root mean
square error in the forecast but increases the computa-
tional cost [9], [22].

Work on tracking within the machine learning commu-
nity is primarily statistical: techniques such as Kalman
filters, extended Kalman filters, switching Kalman fil-
ters, and particle filters in particular, are commonly
used. Traditional tracking applications include tracking
of ballistic objects such as missiles, and tracking of
enemy aircraft [26]. Other applications include tracking
vehicles [15] and tracking people [21], [24]. For instance,
switching Kalman filters have been used to track humans
alternating between running and walking [24].

While tracking in sensor networks is based on sta-
tistical techniques, like the Kalman filter [21] or the
extended Kalman filter [3], the distributed aspect of the



sensor network introduces interesting variations on the
tracking problem such as distributed versus centralized
tracking [3]. In sensor networks comprised of many
low-power sensors, work on tracking focuses on how
to leverage the distributed aspects of the network to,
for instance, minimize power consumption or distribute
computation. In [16], a dynamically changing subset of
the sensors (a “collaborative group”) is maintained for
each object being tracked, but only the current group
leader performs tracking, thereby minimizing energy
costs. Similarly, [23] uses collaborative groups of video
sensors to track targets such as vehicles. This contrasts
with the CASA [31] radar network: the key idea for
using a distributed collaborative adaptive radar network
in CASA is that the more radars that scan the same
region, the more informative will be the collective data.
Hence, the current goal of collaboration in the CASA
network is not to decrease energy costs but rather to
improve detection of sensed phenomena.

The adaptivity of the CASA radar network, however,
brings it back into the realm of problems encountered
in sensor networks. Various meteorological features of
interest and differing end user interests in the various
features in the environment give rise to a resource
allocation problem in which the targeting of the radars is
to be optimized. Despite this difference from the case of
power-constrained sensor networks, collaborative groups
as in [8] or [16] could potentially be formed to solve
smaller local optimization problems.

IV. COMPARISON OF KALMAN FILTER, SWITCHING

KALMAN FILTER, AND LEAST-SQUARES REGRESSION

This section presents results comparing how well
the KF, the SKF, and linear least-squares regression
(SCIT [10]) perform in tracking a storm and predict-
ing its future location. We constrain the problem in
two ways. First, we are only interested in tracking a
previously identified storm cell; we assume that there
are meteorological algorithms that peform identification.
Second, we assume that storm cell observations are
obtained at regular intervals. This is not a necessary
assumption, but it simplifies prediction using the Kalman
filter.

A. Implementation

We implemented the SKF equations found in [19]
in C++ and using the matrix library CwMtx and the
GNU Scientific library. The SKF model was used to do
prediction in both the basic KF (by setting the number of

KFs to one) and the SKF. The regress function in Matlab
was used for linear least-squares regression.

B. Data

Real storm track data was obtained from NSSL
(National Severe Storms Laboratory), courtesy of Kurt
Hondl and the WDSS-II software [7]. The data consists
of 35 storm tracks ranging in length from ten to 30 data
points, identified using the SCIT algorithm [10]. Each
track is a sequence of latitude and longitude coordinates
with observations occurring approximately every five
minutes. We note that SCIT, which stands for Storm Cell
Identification and Tracking, both identifies and tracks
storms. Each new datapoint that the SCIT algorithm
acquires must be assigned to either an existing storm
track or to a new storm track. A regression model is
then fit to the five most recent datapoints in the track
and used to predict future datapoints for that track. Our
data consists of the storm tracks produced by SCIT.

C. Inference and Prediction

Inference in the SKF was done using a second order
Generalized Pseudo Bayesian algorithm: i.e., collapsing
was done over states two timesteps and older. This
required computing the terms Pr(St−1 = i, St = j|y1:t)
and Pr(St = j|y1:t), where St represents the switch
node value at time t and y1:t represents the sequence
of observations from time 1 to t. These terms permit
us to compute the most likely sequence of switch node
values with argmaxjP (St = j|St−1 = i, e1:t) beginning
at time 1 and ending at time t. In comparison to the
Viterbi algorithm (see [20], [27] for a description), this
algorithm is simpler because we have already computed
the terms Pr(St−1 = i, St = j|y1:t) and Pr(St = j|y1:t).
The switch node value at t indicates the KF that will give
the best prediction, and hence that KF is used to do the 1-
step prediction. Prediction with linear least-squares was
done by using the previous five points to compute the
line with the smallest least-squares error. The average x-
interval was then added to the most recent x-coordinate
to get the next x-coordinate. Least-squares was then used
to determine the corresponding y-coordinate.

D. Training

We compared hand-initializing the parameters with
using Expectation-Maximization (EM) [19] to learn the
parameters for the KF and the SKF models. See [19]
for an explanation of the model parameters. We defined
each observation to be a vector of length two comprised
of a (latitude, longitude) pair. We defined the mean of



each hidden state to be a vector of length four comprised
of the 4-tuple, (latitude, longitude, latitude velocity,
longitude velocity). We hand-coded the parameters as
follows. The KF used generated points to the northeast.
That is, the parameter matrix A was,

A =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




The first column represents latitude, the second rep-
resents longitude, the third represents latitude velocity,
and the fourth represents longitude velocity. The first
row encodes the linear update equation for the latitude,
the second row encodes the update equation for the
longitude, the third row encodes the update equation for
latitude velocity, and the fourth row encodes the update
equation for longitude velocity. For instance, the latitude
at time t + 1 will be the latitude for the hidden state at
time t, since there is a 1 in row 1 column 1, plus the
latitude velocity for the hidden state at time t, since there
is a 1 in row 1 column 3. Similarly, longitude at time
t+1 will be the longitude for the hidden state at time t,
since there is a 1 in row 2 column 2, plus the longitude
velocity for the hidden state at time t, since there is a 1
in row 2 column 4. Consequently, if there is little noise
and no observations, then iterating this KF will generate
points to the northeast.

The SKF used four KFs; three generated points
to the north, east, and northeast respectively and the
fourth encoded a stationary system. For both the KF
and the SKF, the first observation y1 was used for the
initial state µ. For the SKF, the prior and transitions
for the switches were uniform, i.e., all KFs had equal
probability of being used. Below are the parameters for
the SKF. The KF parameters are those for s = 1. The
remaining hand-coded parameters for all 1 ≤ s ≤ 4 are,

Σs =




10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10


 Qs =




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1




Rs =

[
0.01 0
0 0.01

]
Bs =

[
1 0 0 0
0 1 0 0

]

A1 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 A2 =




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




A3 =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


 A4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




We now present the learned KF parameters obtained
using EM. Due to the limited number of tracks, pa-
rameter learning was done with leave-one-out cross-
validation: i.e., we trained on 34 tracks and tested on
the 35th. We did this 35 times so that we could test on
each of the tracks. The learned KF parameters below are
from a representative training run on 34 tracks.

µ =




32.2006
−94.58
0.06057
−0.00713


 R =

[
0.00885 0.00124
0.00124 0.00663

]

B =

[
0.9987 −0.0005 −0.0068 −0.0068

−3.1034e − 06 1.0001 −0.0131 0.0130

]

Σ =




10.5616 −6.4091 −0.0106 0.0478
−6.4091 4.4895 0.0134 −0.0338
−0.0106 0.0134 9.0311e − 05 −0.0001
0.0478 −0.0338 −0.0001 0.0003




Q =




0.04520 0.01209 −0.00075 −0.00074
0.01209 0.02358 −0.00279 0.00204
−0.00075 −0.00279 0.07144 0.00319
−0.00074 0.00204 0.00318 0.06414




A =




0.99518 −0.00177 0.30253 0.05275
0.00311 1.00081 0.05589 0.20061
−0.00354 −0.00121 0.47183 −0.01887
0.001878 0.00049 0.00159 0.48156




The µ and Σ parameters represent the mean and
covariance of the initial state respectively; the first
row/column represents latitude, the second represents
longitude, the third represents latitude velocity, and the
fourth represents longitude velocity. The Q parameters
represent the covariance for hidden state while the R
parameters represent the covariance for the observations.

E. Results

Table I summarizes the average 1-step and 2-step root
mean-square error (RMSE) for the latitude and longitude
error over all storm tracks for each of the methods.
Table II contains the individual latitude and longitude
1-step prediction RMSEs for each storm track for each
of the methods. The RMSE was calculated using only
predicted points. For 1-step prediction, the first predicted
point was the 6th point; for 2-step prediction, the first
predicted point was the 7th point. Figure 3 plots the 1-
step predictions for linear least-squares regression and
the hand-coded SKF for three different storm tracks
(see [17] for more storm track plots). Table III summa-
rizes the average computation time required for making a
1-step prediction. Computation times were recorded for
a 1 GHz Dell Optiplex GX150.



TABLE I

SUMMARY OF THE PREDICTION ERROR. EM INDICATES THAT THE

MODEL PARAMETERS WERE LEARNED.

Avg 1-Step RMSE Avg 2-Step RMSE
Method Latitude Longitude Latitude Longitude

KF 0.2248 0.1923 0.3359 0.2871
KF-EM 0.1967 0.1680 0.2680 0.2389
SKF 0.1914 0.1702 0.2642 0.2421
SKF-EM 0.2577 0.2070 0.3948 0.3110
LS 0.2114 0.2107 0.3030 0.3081

TABLE II

ROOT MEAN SQUARE ERROR OF INDIVIDUAL TRACKS FOR 1-STEP

PREDICTIONS. COLUMNS ARE LATITUDE LONGITUDE.

Track KF-EM SKF Least-Squares
(length)

1(10) 0.0669 0.0286 0.0288 0.0285 0.0308 0.0524
2(10) 0.5668 0.5763 0.6031 0.5938 0.5381 0.5516
3(10) 0.4658 0.4596 0.5486 0.4488 0.5886 0.4599
4(10) 0.4693 0.0532 0.4837 0.0677 0.4879 0.0916
5(10) 0.0740 0.0191 0.0211 0.0281 0.0191 0.0201
6(10) 0.0947 0.0200 0.0230 0.0270 0.0202 0.0203
7(10) 0.0321 0.0197 0.0173 0.0010 0.0190 0.0080
8(10) 0.0347 0.0387 0.0298 0.0209 0.0302 0.0137
9(10) 0.6926 0.6271 0.7653 0.5751 0.7024 0.7652
10(10) 0.0610 0.5968 0.0683 0.5821 0.0666 0.5813
11(12) 0.0297 0.0244 0.0197 0.0279 0.0162 0.0388
12(12) 0.0135 0.0087 0.0251 0.0105 0.0251 0.0111
13(12) 0.0830 0.4339 0.0668 0.4413 0.0631 0.4579
14(13) 0.9485 0.0241 0.9563 0.0350 0.9575 0.0335
15(13) 0.0256 0.0574 0.0326 0.0585 0.1574 0.2630
16(13) 0.3543 0.4235 0.3606 0.4143 0.3876 0.4645
17(13) 0.1490 0.5418 0.1563 0.5547 0.1577 0.9725
18(13) 0.0271 0.0350 0.0079 0.0092 0.0088 0.0174
19(13) 0.0148 0.0135 0.0118 0.0092 0.0135 0.0674
20(13) 0.0144 0.0221 0.0151 0.0165 0.0134 0.0157
21(14) 0.1546 0.0465 0.1477 0.0448 0.1457 0.0550
22(14) 0.0584 0.0393 0.0268 0.0282 0.0227 0.0623
23(14) 0.0243 0.0125 0.0157 0.0110 0.0141 0.0146
24(15) 0.0654 0.0272 0.0391 0.0281 0.0362 0.0514
25(15) 0.1394 0.0283 0.1307 0.0186 0.1304 0.0190
26(15) 0.0192 0.0143 0.0171 0.0158 0.0532 0.1206
27(16) 0.0327 0.1051 0.0333 0.1088 0.0352 0.1140
28(16) 0.3871 0.2127 0.3918 0.2128 0.4226 0.2576
29(18) 0.1505 0.2664 0.1581 0.2683 0.1614 0.2859
30(19) 0.7902 0.3782 0.8126 0.3854 0.8863 0.4001
31(21) 0.0651 0.0332 0.0158 0.0463 0.0139 0.0325
32(25) 0.0361 0.0329 0.0129 0.0236 0.0129 0.0298
33(26) 0.2318 0.1773 0.2400 0.1785 0.2625 0.1943
34(29) 0.6633 0.6299 0.6830 0.6499 0.8844 0.8105
35(30) 0.0457 0.0215 0.0142 0.0213 0.0132 0.0200

TABLE III

TIME REQUIRED TO MAKE A 1-STEP PREDICTION ACCORDING TO

THE NUMBER OF KALMAN FILTERS USED.

Time for 1-Step Prediction in Seconds
# of KFs Average Maximum Minimum

1 0.000155 0.000864 0.000103
4 0.001689 0.006479 0.001138
8 0.006655 0.028375 0.004553

30 30.1 30.2 30.3 30.4
−92.7

−92.68

−92.66

−92.64

−92.62

Latitude

Lo
ng

itu
de

Track 18: 1−Step Prediction

skf
least−squares
observed

(a) Track 18

37.2 37.4 37.6 37.8 38
−97.2

−97

−96.8

−96.6

−96.4

−96.2

Latitude

Lo
ng

itu
de

Track 31: 1−Step Prediction

skf
least−squares
observed

(b) Track 31

34 34.5 35 35.5 36
−98

−97.8

−97.6

−97.4

−97.2

−97

Latitude

Lo
ng

itu
de

Track 33: 1−Step Prediction

skf
least−squares
observed
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Fig. 3. 1-Step predictions for storm tracks 18, 31, and 33. Switching
Kalman filter parameters were hand-coded.



F. Discussion

Although linear least-squares regression (SCIT [10])
was originally used to identify the storm tracks from
raw data, Table I shows that the average track RMSE is
lowest for the learned KF and hand-coded SKF models.
Similar results hold for both the 1-step and 2-step
prediction. Because of the limited amount of training
data, we will focus on the results for the hand-coded
SKF. In comparison to Table I, Table II shows that
the individual track RMSE is sometimes lower for the
SKF and sometimes lower for the least-squares method.
Additionally, the SKF may have lower latitude error
but higher longitude error, or vice versa. We therefore
compare the different methods based on the track RMSE
instead of the average RMSE. For instance, Figure 3a
shows 1-step predictions for track 18 for which the
SKF has lower RMSE, while Figure 3b shows 1-step
predictions for track 31 for which least-squares has
lower RMSE. The most apparent difference is that the
track in Figure 3a is much less linear than the track in
Figure 3b, which would explain why least-squares had
higher RMSE than the SKF for track 18.

Examining the prediction errors in Table II shows
that for a given method, the latitude RMSE is often
higher than the longitude RMSE, particularly for the
Kalman filter methods. This may be a function of the
storm dynamics or measurement technique, since the
discrepancy is most apparent for tracks with large RMSE
such as track 33 (Figure 3c). We note that the least-
squares method seems to have less of a bias between
the latitude and longitude RMSEs. This is particularly
apparent if the average RMSEs for least-squares in
Table I are examined. It should be noted that 0.1 degrees
of latitude corresponds to 6.9 miles and that 0.1 degrees
of longitude corresponds to at most 6.9 miles [1].

The distribution of the prediction errors in Table II for
the SKF and least-squares varies widely, from about 0.88
to about 0.008. Examining the actual tracks shows that
tracks with large errors, such as track 33 in Figure 3c,
often looked like they were two different tracks joined
together. The tracks were originally identified using
SCIT so this phenomenon may be a result of how new
datapoints were associated with existing tracks. The SKF
framework could be used instead of SCIT to associate
new datapoints with existing tracks or to identify new
tracks.

The KF using learned parameters does well, about
as well as the SKF using hand-coded parameters. This
is one indication that the poor performance of the KF

using hand-coded parameters is due in part to improperly
initialized parameters. One caveat is that there were a
limited number of tracks for training, hence the use
of leave-one-out cross-validation. More tracks would
help verify the performance of the KF and SKF with
learned parameters. We note that the SKF using learned
parameters performs worse than the KF with hand-coded
parameters. This may be due in part to overfitting as
a result of the small dataset. Work by [6] discusses
the difficulties with training SKFs (referred to in that
paper as switching state-space models), in particular
the difficulty in learning when to switch. We found
empirically that the performance of the learned models
depended strongly on how the model parameters were
initialized before learning. For instance, although not
shown, we found that with a slightly different parameter
initialization (using 0.01 · I instead of 0.1 · I for the
Q matrices where I is the identity matrix), and using
8 KFs in the SKF, gave improved performance for the
learned SKF over the hand-coded SKF. Also note that the
Kalman filter models need to condition on an adequate
number of observations occurring sufficiently frequently
to do well. With only a few observations or with infre-
quent observations, linear least-squares regression may
have the advantage. We note that linear least-squares
regression over only the last five data points is a sort of
piece-wise linear approximation. But unlike in the SKF
model, linear least-squares regression can only switch to
an arbitrarily sloped new line segment every five points.

Finally, Table III shows that while increasing the
number of Kalman filters used in the SKF increases the
computation time required for making a 1-step predic-
tion, the computation time required is still sub-second.
Although not shown, we also found that (as expected) the
computation time required for making a 1-step prediction
is not affected by the number of previous observations.
With respect to other storm-tracking methods besides
least-squares, we note that the hiearchical clustering
method in [13] uses data acquired every 5-6 minutes
and requires thirty seconds of computation to perform
prediction. In comparison, the ensemble Kalman filter
makes long-term (12 hour) forecasts [18].

V. SUMMARY

For certain types of tracks, the SKF appears to have
the potential to better predict the future location of a
storm centroid than the linear least-squares SCIT [10]
algorithm. Since we compared the SKF and linear least-
squares regression on data already processed by SCIT,
a comparison of the two methods on raw data would



be useful. Some of the difficulties initially anticipated
with tracking storms were not encountered. For instance,
storms are not discrete objects, but tracking the storm
centroid circumvents this issue. However, accounting for
some of the variability of a storm by tracking the entire
storm cell and any encompassing larger or neighboring
storms using additional hidden variables in the graphical
model could still potentially improve predictions.

VI. FUTURE WORK

There are several directions for future research. With
respect to the problem of tracking meteorological phe-
nomena, one interesting direction would be to look at
multiple target-tracking: e.g., tracking the splitting and
merging of storms. This would eliminate the reliance
on SCIT for associating new datapoints with existing
storm tracks or for identifying new storm tracks. An-
other interesting direction would be to incorporate more
meteorological information into the SKF model, possibly
by adding more hidden nodes. For instance, knowledge
of the average velocity of a storm or the calibration error
of the radars could be incorporated into the parameters.
With respect to the models used, in this paper we
focused on two related DBNs, the KF and the SKF. We
are interested in exploring related models, such as an
extended version of the SKF with multiple higher level
layers instead of only a single switch layer. Such models
would potentially permit multiscale predictions similar to
those of [13], [14]. Since exact inference in models like
the SKF is often computationally expensive, exploring
approximate inference methods for such models would
also be useful. Finally, it would be interesting to use the
predictions made by models like the KF and SKF for
decision-making.
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