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Abstract

Mobile wireless networks present several challenges for any learning system, due to
uncertain and variable device movement, a decentralized network architecture, and
constraints on network resources. In this work, we use deep reinforcement learning
(DRL) to learn a scalable and generalizable forwarding strategy for such networks.
We make the following contributions: i) we use hierarchical RL to design DRL
packet agents rather than device agents, to capture the packet forwarding decisions
that are made over time and improve training efficiency; ii) we use relational
features to ensure generalizability of the learned forwarding strategy to a wide
range of network dynamics and enable offline training; and iii) we incorporate both
forwarding goals and network resource considerations into packet decision-making
by designing a weighted DRL reward function. Our results show that our DRL
agent often achieves a similar delay per packet delivered as the optimal forwarding
strategy and outperforms all other strategies including state-of-the-art strategies,
even on scenarios on which the DRL agent was not trained.

1 Introduction

Mobile wireless networks have been used for a wide range of real-world applications, from vehicular
safety [62] 55] [16] to animal tracking [25] [71] to environment monitoring [41} [2]] to search-and-
rescue [20} 21, 147] to military deployments [46| 44, [26] to the mobile Internet of Things [6]. These
networks present several challenges, however, for learning systems. Devices are moving due to their
association with, for instance, vehicles, UAVs, robots, animals, or people, which causes changes in the
network connectivity. As a consequence, devices are often only able to communicate with each other
during limited windows of time. Furthermore, it may be difficult to predict when opportunities for
communication may occur as these depend on device movement. Depending on the specific network
problem to address, there may also be competing goals to trade-off, such as delay vs. resource usage.
Finally, the network architecture is decentralized, complicating training of any learning systems as
exchange of training information is limited by the available communication opportunities.

In this work, we focus on the problem of packet forwarding in a mobile wireless network. Tradi-
tionally, forwarding strategies are hand-crafted to target specific kinds of network connectivity. For
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(a) Routing: v has a contemporaneous path to d, and so p is forwarded along the path.
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(b) DTN forwarding. Only temporal paths exist from v to d, so devices independently choose p’s next hop.

Figure 1: Packet p destined to device d travels from device v to device us to finally arrive at its destination
device d, but whether routing or DTN forwarding is used depends on whether a contemporaneous path is present.

instance, in some mobile networks, see Fig. [[[(a), contemporaneous end-to-end paths may exist due to
dense connectivity or slow device movement, and so routing [23], 43| [11} 42| is used to discover and
forward packets over these paths. In other mobile networks, see Fig. [[(b), devices only occasionally
meet due to sparse connectivity or fast device movement, and so contemporaneous paths rarely exist.
Consequently, delay tolerant network (DTN) forwarding [56,157,163] is used and the best next hop
for a packet is chosen based on criteria such as expected delay to meet the packet’s destination.

In many real mobile wireless networks, however, a mix of connectivity is often found, see [34]],
motivating the need for an adaptive forwarding strategy. To learn such a strategy, we use deep
reinforcement learning (DRL) [60], using deep neural networks (DNN5s) [[7] to approximate the RL
policy. By choosing next hops locally at devices, both contemporaneous and temporal paths can be
implicitly constructed by the DRL agent. Importantly, devices located in different parts of a network
can independently run the same DRL agent as the agent will react appropriately to the local state at
each device by using the parts of its policy relevant for that state. Consequently, a single policy can
be applied to a state space that includes both well-connected and poorly connected parts of a network.

Most works on DRL-based forwarding in wireless networks focus on stationary devices; those that do
consider device mobility either target specific kinds of network connectivity or have other limitations
(see §2). In this work, we focus on designing a forwarding strategy for mobile wireless networks able
to adapt to very different kinds of network connectivity. We make the following contributions.

i) Packet-centric decision-making to simplify learning (§3.1). We use packer agents, making
packets, rather than devices, the decision-making agent, to accurately assign credit to those
actions that affect packet success. Because packets can wait for several time steps before making
a decision, we use hierarchical RL [13 |61 4] with fixed policy options [61] to more efficiently
back up from one decision point to another.
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Relational features to ensure generalizability despite device mobility (§3.2) We use relational
features to represent the states and actions used by the DRL agent. Relational features model
the relationship between network devices instead of describing a specific device, and so support
generalizability to scenarios on which the DRL agent was not trained. This allows us to train
offline thereby avoiding the need for decentralized communication. Relational features also
allow us to structure the DNN representing the DRL forwarding policy to consider one action at
a time, producing a single Q-value per state, action pair. The number of times the DNN is used
to predict Q-values then corresponds to the number of actions available, allowing the trained
DRL agent to handle varying numbers of neighbors (see Fig. [I)) and so be network independent.

iii) A weighted reward function to trade-off competing goals (§3.3). To incorporate packet
forwarding goals and network resource considerations into packet decision-making, we design a
weighted reward function for the DRL agent. Using our reward function, more weight can be
placed on higher priority forwarding considerations, such as to not waste resources unnecessarily.



iv) Extensive evaluation (§4). We evaluate our approach, which combines the above key design
decisions, on three different networks sizes and six different transmission ranges spanning the
continuum from disconnected to well-connected networks. Our results show that our DRL agent
trained on only one of these scenarios generalizes well to the other scenarios. Specifically, our
DRL agent achieves delay similar to an optimal strategy and outperforms all other strategies in
terms of delay including the state-of-the-art seek-and-focus strategy [56]], even on scenarios on
which the DRL agent was not trained. While the optimal strategy requires global knowledge of
future device movement, our DRL agent uses only locally obtained feature information.

2 Related Work

Many recent works on DRL based forwarding strategies focus on stationary wireless networks, see
(68,164,167, 1121381 159,169,170, (9, 35]]. Fewer works consider mobile wireless networks, and those that
do often optimize for specific kinds of network connectivity, such as focusing primarily on vehicular
networks [31,151},132,133]] or UAV networks [15! 54,1491 52| |45]]. Works that consider mobile networks
more broadly have limitations: [48] uses per-destination Q-values; [14} 53] consider simplified state
and action spaces; [[18]] focuses specifically on forwarding messages to network communities; [22} [26]]
focus on relatively limited network scenarios with a few fixed flows and up to 50 devices; [24]] extends
early work [8, 29] to tactical network environments but uses RL to estimate the shortest path to the
destination rather than to select next hops. In comparison, we specifically focus on designing an
adaptive forwarding strategy that can span the continuum from sparsely connected to well-connected
mobile networks, and consider networks with 100 mobile devices. While our work builds off of ideas
in [35]], we consider the much harder network scenario of mobile devices, rather than the stationary
devices considered in [35], and we design novel features to capture temporal and spatial network
connectivity as well as propose a reward function to reflect competing network goals.

An important takeaway of our work is the need to tailor existing machine learning techniques to handle
the decentralized communication and resource constraints of mobile wireless networks. For instance,
while we have some features that represent actual relationships between devices as in relational
learning [17, 28l I58]], we primarily use relational techniques to treat devices as inter-changeable
objects described by their attributes rather than their identity, to build a single model that works
across all devices. While our aggregated neighborhood features are similar in spirit to graph neural
networks [S0, 27, 5], our features are simpler to compute and can more easily handle changing
neighbors. While we use DRL to learn a policy, we handle actions differently than in a DQN [37]]
as the number of actions available at a device changes over time and varies across devices. Finally,
while our weighted reward function could also be converted to use multi-objective reward techniques
[65[19], which find policies for a range of reward factor weightings, doing so would make training
the DRL agent more computationally expensive.

3 Learning an Adaptive Forwarding Strategy

3.1 Packet Forwarding Using DRL

RL focuses on the design of intelligent agents: an RL agent interacts with its environment to learn a
policy, i.e., which actions to take in different environmental states. The environment is modeled using
a Markov decision process (MDP). An MDP comprises a set of states (.5), a per state set of actions
(A(s)), a reward function, and a Markovian state transition function in which the probability of the
next state s’ € .S depends only on the current state s € .S and action a € A(s). RL assumes that these
state transition probabilities are not known, but that samples of transitions of the form (s, a,r, s") can
be generated. From these samples, the algorithm learns a Q)-value for each (s, a) pair. A Q-value
estimates the expected future reward for an agent, when starting in state s and taking action a. Once
learned, the optimal action in state s is the one with the highest ()-value. When the MDP has a small
number of states and actions, an RL agent can learn a ()-value function using Q-learning (see [66]]).
When the state space is too large for exact computation of the ()-values, function approximation may
be used to find approximate ()-values. Here, we use DNNs for function approximation, see Fig. [2]
Each state s and action a is translated into a set of features via the functions f4(-) and f,(-). These

features are input to the DNN, to produce as output an approximate Q-function Q(fs(-), fa(-)).

In a mobile network, it is natural to think of devices as the DRL agents choosing next hops for packets,
but doing so confuses the decision-making dependencies that are involved in forwarding a packet.



That is, the steps from a packet’s source device to its destination device (or drop) are constructed by
the behavior of all devices through which the packet passes, rather than only by the device at which
the packet is currently located. Thus, we use packet agents, making packets, rather than devices, the
decision-making agent, to more accurately assign credit to the actions that affect packet success. A
packet’s decision-making, however, can also involve multiple time steps, such as waiting in a queue
for its turn to make a forwarding decision, or waiting for another device to come within transmission
range. Thus, we use hierarchical RL [[13}161] 4]}, specifically fixed policy options [61]], to allow reward
signals to be backed up over multiple time steps in a single update. The use of options additionally
supports faster learning while using less training data.

3.2 Mobile Network Features

Our goal is to be able to use the same learned forwarding strategy at different devices and in different
mobile networks (e.g., dense or sparse networks with or without contemporaneous end-to-end paths)
with unknown or unseen device mobility. To achieve this, we use relational features to represent the
states and actions used by the DRL agent. Relational features, such as delay to destination, model the
relationship between network devices instead of describing a specific device and so are not tied to
a specific network topology. We propose five classes of relational features specifically tailored to
model mobile wireless networks. These classes give a general framework for organizing the features
needed for forwarding. The features we propose for each class, however, are not exhaustive but rather
only the specific features our DeepRL agent uses in our simulations in §4] We expect many other
features could be proposed for each class. We next describe the features we use, from the point of
view of a packet p when choosing its next hop. We assume that p’s destination is device d and that p
is currently located at device v which has neighbors u € Nbr(v) when describing these features.

Packet features, f,qcret(p), are a function of information about packet p. Our DRL agent currently
uses only one packet feature: packet p’s time-to-live (TTL), which is used in real networks to prevent
undeliverable packets from looping forever in the network. The TTL field is decremented when a
packet is forwarded to another device. A packet is dropped when its TTL reaches 0.

Device features, fj.yicc(v,d), are a function of device v’s information and destination device d’s
ID. Our DRL agent uses four device features computed at the current timestep ¢: i) device v’s queue
length, ii) device v’s queue length considering only packets for destination d, iii) device v’s node
degree, and iv) device v’s node density, computed as the fraction of neighbors that v has out of the N
devices in the network. Even when a network has little congestion, queue length information can still
be useful when choosing next hops. For instance, next hop devices that do not have any packets in
the same flow as p may be preferred to better distribute traffic. Our DRL agent additionally keeps
track of two device features, the x and y location coordinates of device v, which are only used to
compute the Euclidean distance, a path feature described later in this section. While we assume every
device knows its own location, locations for other devices are obtained only when two devices meet
and exchange features. Consequently, location (and thus distance) features can be out-of-date.

Path features, f,..1 (v, d), describe the time-varying path from a device v to a destination device d.
Unlike the other features discussed so far, path features may use not just current device information but
also historical information. Consequently, these features may have some associated uncertainty. Our
DRL agent currently uses only one path feature: the Euclidean distance from device v to destination
d. This is calculated using v’s current x and y location coordinates, and device v’s recorded (and
possibly out-of-date) location coordinates of destination d (see description of device features).

Neighborhood features, f,,;,1004(v, d), are computed over the current neighbors Nbr(v) of a device
v. Our DRL agent uses the following neighborhood features: for each device and path feature,
fi € faevice(v,d) U fpain (v, d), we compute the minimum, maximum, and average over device v’s
current neighborhood, Nbr(v). These features compress the information obtained from a variable
number of neighbors into a fixed size vector to input to the DNN in Fig. 2]

Context features, f.,ntc.t(p, 1), provide context for other features. For a packet p at a device v
considering a next hop u € Nbr(v) U v, our DRL agent uses context features that indicate whether p
has recently visited u or not. Each packet p stores in its packet header the last Np;st0ry device IDs
that it visited, where Np;si0ry 1S a predetermined constant. Let 7{(p, ) be the ID of the device that
packet p visited ¢ hops ago, for 0 < ¢ < Np;st0ry. When i = 0, then #(p, 0) is the device at which p
is currently located. To make the context features relational, rather than use device IDs, we use a



Table 1: For each feature f;, normalization is done using (f; + 1)/(D + 1), where 1s are added to avoid
zero values for features. Neighborhood features are not normalized as they are a function of other normalized
features; context features also are not normalized as they are Boolean valued.

Packet Features D \ Device Features D \ Path Features D

Packet TTL 300 | Queue length 30 | z-coordinate location 500m
Per-destination queue length 30 | y-coordinate location ~ 500m
Node degree 10 | Euclidean distance 2
Node density N

sequence of Boolean features, b;, defined as:

b 1, ifu=H(p,1),
710, otherwise.

ey

The use of packet history reduces unnecessary packet transmissions. For instance, even if a possible
next hop device u has promising features for reaching the destination, if packet p recently visited u,
then u may be a less good next hop than it seems based solely on u’s other feature values.

Feature estimation. A device discovers its neighbors through the use of “heartbeat" control messages.
All features are then estimated using local exchange of information between neighboring devices.
Device v obtains the following information from each neighbor u: i) the features fgeyice(u,d) U
fpath (W, d) U frbrhooa(u, d), i) u’s current x and y location coordinates, timestamped with u’s
current clock, and iii) the  and y location coordinates for every other device w, which w has either
recorded directly from w or received indirectly from another device, along with the recording’s
timestamp, i.e., the time on w’s clock of when the coordinates were recorded. Device v then uses ii)
and iii) to update its recording of the x and y location coordinates for every other device, overwriting
older recordings with more recent recordings for a device w, comparing the timestamps associated
with the recordings. Because these timestamp comparisons always compare timestamps received
from the same device w, no clock synchronization is needed.

Feature normalization. Mobility makes normalization challenging as the ranges of the raw feature
values may be very different in different mobile networks. To address this, we make the normalization
a function of network properties when possible, such as the (approximate) number of devices in the
network or the (approximate) size of the area in which devices are moving, see Table[T] In this way,
the normalization can better adapt to new network environments.

3.3 MDP Formulation

Let Nbr(v) be the current neighbors of device v. Each individual packet agent p currently located at
device v can choose between moving to one of these neighbors or staying at device v. Packet p’s
actions therefore correspond to the set Nor(v) U {v}. We next define the states, actions, and reward
function for our packet-centric DRL agent from p’s point of view.

States. The state features that p uses to make a decision are a function of features derived from p, d,
and v: f; (U,p, d) = fpack’et (p) U faevice (’U, d) U fpath(va d) U fan’hOod(U7 d)

Actions. The action features for each action u in p’s action set Nbr(v) U {v} are defined by
falu,0,d) = faevice(t, d) U fpath (8, d) U frorhood(t, d) U feontewt(p, u). This action description
reuses many of the same features in the state description, but is defined in terms of a device u €
Nbr(v) U {v} rather than just p’s current location at device v, and includes the context features.

Rewards. Forwarding strategies for mobile wireless networks must trade-off competing goals for
packet delivery, such as minimizing delay until delivery while also minimizing resource usage like
energy and link bandwidth. As a packet travels to its destination, it must also assign credit or
blame to the devices it passes through, depending on the success or failure of the packet to reach its
destination. To incorporate these considerations into packet decision-making, we design a weighted
reward function. We define separate rewards for the action of a packet choosing to stay at its current
device, 7544y, vS. moving to a neighbor device that is not the destination, r¢,qnsmi¢- The ratio of
Tstay 10 T'transmit determines the trade-off the forwarding strategy learns between minimizing packet
delivery delay vs. number of transmissions. For mobile networks, where forwarding loops can easily
arise, explicitly penalizing transmissions is important. For instance, by setting 754y = Ttransmit
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Figure 2: Packet p at device v makes a forwarding decision by activating the DNN at v once for each action a
available in p’s current state s. The DNN inputs are the features f5(-) and fo(-), which describe the state from
p’s point of view and the action under consideration. Packet p chooses the action with the best Q-value.

the DRL agent would minimize delay, but ignore the number of transmissions made. We define two
other rewards, for actions that lead to a packet being delivered to its destination, 7geisvery» Or dropped,
Tdrop = Ttransmit/ (1 — ), where v € [0, 1] is the RL discount factor. The drop reward is equivalent
to receiving a reward of 74,4, smi¢ fOr infinite timesteps. Our reward settings are given in Table@

Decision-making. The DNN architecture we use to approximate the Q-value function is shown in Fig.
Our DNN has four layers: input, expansion, compression, and output. Let F' = | fs(-)| + | fo(*)]
be the number of input features and thus the size of the input layer. The expansion layer has 10F'
neurons and the compression layer has F'/2 neurons. The DNN then outputs a Q-value for each
state, action pair, represented by the feature vectors f5(-) and f,(-). Each device has a copy of the
same trained DNN that encodes the forwarding strategy, which allows decision-making to be done
independently at each device. Fig. 2] also overviews how our DRL packet agent uses the trained
DNN to make a forwarding decision. To obtain the features f;(-) and f,(-) to input into the neural
network in Fig. [2} the DRL agent computes the following features for packet p with destination d
currently at device v: fpacket(D), faevice(V, d), and fpqsn (v, d) using local information at device v;
Frbrhood(Vs ), faevice(W; d), fpath(u, d), and frprhood(u, d) using the features received by v from
u € Nbr(v); and finally, f.ontest(p, u) using only ’s ID in addition to the information carried in
packet p’s header fields. The number of times the DNN is used to predict Q-values corresponds to the
number of actions available to the packet. Using the DNN to separately make predictions for each
action, rather than making predictions for all actions at once, allows the DRL agent to handle varying
numbers of actions, and, correspondingly, varying numbers of neighbors. During training, e-greedy
action selection is used, with € set as in Table[2}

Training. In a mobile wireless networks, devices can only exchange information (such as whether
a particular packet reached its destination or was dropped) using distributed communication. Con-
sequently, it is typically not feasible to gather the information needed for training online due to
limited network bandwidth. Instead, we use offfine training. During training, for each packet decision,
regardless of the packet’s device location, we record the state features, the action features for each
action considered, the action selected, and the received reward in one file. Because our relational
features are device and network independent, we are able to train a single DRL agent using this file
using experience replay. The learned forwarding strategy is then copied to each device and used
independently at each device by packets to choose next hops. This approach to training is particularly
important as even a single mobile network scenario includes network connectivity changing over
time and space, making it essential to be able to include such diversity during training.

4 Simulation Results

Our simulations are done using a custom discrete-time packet-level network simulator that we have
implemented in Python3. The DRL agents are trained and all strategies are tested using this simulator.
We use Keras v.2.5.0 [10] and Tensorflow v.2.50 [1]] to implement the DNN. Table Q] gives our
simulation parameters.

4.1 Methodology

Device mobility. We use BonnMotion [3]] to generate mobility traces for devices moving under the
steady-state random waypoint mobility model [39,/40,130]. For training, we use traces of Ny,.qin = 25
devices moving in a 500m x 500m area at an average speed of 3 m/s with a speed delta of 2 m/s and



Table 2: Simulation parameters.

Symbol Meaning Value
Nirain; N # of devices during training; testing 25; 25, 64, 100
Xitrain; Xtest Transmission range for training; testing 50m; 30m to 80m
€train, Etest RL exploration rate for training; testing 0.1; 0

vy RL discount rate 0.99
Tdelivery; Tstays Ttransmit ~ RL reward: delivery; stay; transmit 0;-1;-1,-2,-10
Tdrop RL reward: drop Teransmit/ (1 — )
Nhistory Length of device visit history 0,5
Tirain; Thest # of timesteps for training; testing 90,000; 100,000
Trnodel # of training timesteps used by testing model 60,000
Teootdown # of timesteps at simulation end with no traffic 10,000
Tround # of timesteps per round 1000

- DNN training dropout rate 0.2

a transmission range of X;,4;,=50m. For testing, we generate separate traces for N = 25,64, 100
devices using the same size area and range of speeds, but vary the transmission range, X;.s; from 30m
to 80m to obtain both poorly connected and very well connected mobile scenarios, see Appendix [A]

Network traffic. We model flow arrivals using a Poisson distribution with parameter A = .001.N/25,
scaling the number of flows as a function of the number of devices N in the network. We model flow
durations using an exponential distribution with parameter Ap = 5000 and packet arrivals on flows
using a Poisson distribution with parameter Ap = 0.01. A simulation run starts with ApAp initial
flows. Each device has a queue with a maximum size of B = 200 packets, beyond which additional
packets are dropped. A packet’s TTL field is initialized to 7T Lyy4;, = 300 during training and
TTLes: = 3000 during testing. We use a large testing TTL to ensure no packet is dropped.

MAC protocol. At each timestep, every device in the network is given an opportunity to transmit up
to £ = 100 packets in its queue. Given our network traffic settings, this % is sufficient for a device to
transmit all of its packets, avoiding the need for device decision-making.

4.2 Forwarding Strategies Compared

In our simulations, we compare the performance of five forwarding strategies, including a delay
minimizing strategy (optimal) and a transmission minimizing strategy (direct transmission) to give
bounds on the performance of the DRL agent. We also compare with the Utility and Seek-and-Focus
strategies from [56]] as state-of-the-art strategies.

Optimal forwarding uses complete information about current and future network connectivity to
calculate the minimal hop path that achieves the minimal delivery delay for each packet. To find
these forwarding paths, we make use of epidemic routing. Epidemic routing creates many copies
for a packet and distributes them to the network. For those packet copies that reach the destination
with the minimum latency, we further find the packet copy that reached the destination with the
minimum number of hops. This strategy minimizes delay, while maintaining a good trade-off in
terms of network resources, but is not practical to implement in real networks.

Direct transmission forwarding only forwards a packet one hop, directly from the source to the
destination. This is optimal when the goal is to minimize the number of transmissions per packet.

Utility-based forwarding [56] maintains a timer at each device v for every other device d in
the network, denoted as 7,(d), which is the time elapsed since device v last met device d. We
implemented the timer transitivity as defined in [S6]. For many mobility models, a smaller timer
value on average implies a shorter distance to the device, so the timer evaluates the “utility” of a
device in delivering a packet to another device. A device v chooses a neighbor u as the next hop for a
packet if u has the smallest timer to the packet’s destination d (among all neighbors of v) and u’s
timer to d is smaller than v’s timer to d by more than the utility threshold, Uyj,. If no such neighbor
exists, device v does not forward the packet. We optimize Uy, for Ni,qin = 25 and X¢pqin = 50m,
which are the same settings on which the DRL agent used in testing was trained. The details of
utility-based forwarding and the parameter values we use can be found in Appendix [B]

Seek-and-focus forwarding [56] combines the utility-based strategy with a random forwarding
strategy. If the packet is perceived to be far from its destination, the packet is in seek phase (random
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Figure 3: DRL agent training performance on Nyqin = 25 devices and transmission range Xirqin, = 50m.
Varying 7+ransmst varies the trade-off between delay and number of forwards per packet.

forwarding); otherwise, the packet is in the focus phase, and utility-based forwarding is used to
choose the next hop. Two additional parameters are used to avoid a packet stuck in a phase for a
long time: T'yycys controls the maximum duration to stay in focus phase, and T, controls the
maximum duration to stay in re-seek phase before going to seek phase. All together, six parameters
are used in seek-and-focus forwarding. Again, we optimize these parameters for Ny,.q;, = 25 and
Xtrain = 50m. Further details and the parameter values we use are given in Appendix

DRL2S forwarding uses a DRL agent to make forwarding decisions, trained on a network with
Nirain = 25 devices. Fig. [3|plots training performance, showing the DRL25 strategies converging.
Each training simulation is run for 73,4, timesteps, where each timestep corresponds to one second.
Training is done every T),,nq timesteps using all data received up to that timestep but using a
randomly initialized DNN model. At each timestep, the cumulative performance over all packets
delivered up to the timestep is shown. As shown in Fig. E], varying the transmission reward, 7;,qnsmits
varies the learned trade-off between delay and transmissions. When r;,qpnsmit = —1, there is no
penalty for transmission as a packet receives the same reward for transmitting as for staying at a device,
since 7444y = —1. Correspondingly, we see that when r¢,.qy,smit = —1, delay per packet delivered is
the lowest of the strategies, but the number of forwards per packet is the highest. Conversely, for
Ttransmit = — 10, there is a large penalty for making a transmission, and so, while delay per packet
delivered is the highest for this strategy, the number of forwards per packet is now the lowest. In our
testing results in Fig. @ the DRL25 agents used were trained with 74,.q,smit = —2 as this provides a
good trade-off between delay and number of transmissions.

4.3 Evaluation Results

Overall results. In Fig. ] we plot the the testing performance of the DRL25 agents. Both agents
were trained on a mobile network scenario with Ny, = 25 devices and a transmission range of
Xirain = 50m, with a transmission reward of 7445 smit = —2. The two DRL25 agents differ only in
their choices of Nj,;10ry. The testing scenarios include 25, 64 or 100 devices (the largest network
sizes we investigated) with transmission ranges varying from 30m to 80m, leading to various levels
of connectivity levels (see Appendix [A]for more details). Most of the testing scenarios differ from the
training scenario in terms of the number of devices and/or the transmission range. Fig. ] shows the
performance of the DRL2S5 agents on the various testing scenarios. We see that our DRL2S5 agents are
able to generalize well from the training scenario to the various testing scenarios, including those on
which they were not trained. We also observe that our DRL25 agents often achieve packet delivery
delays similar to the optimal strategy, and outperform all other strategies in terms of delay.

Impact of network connectivity. As the network topology becomes more well connected (i.e., due
to increasing NV or X.s¢), the DRL2S agents start to have delay per packet delivered similar to that of
the optimal strategy, with not too many more forwards per packet delivered. As the network topology
becomes more sparse (i.e., due to decreasing N or X;.s;), the DRL2S agents start to have delay that
is approaching the delay of the other strategies. The DRL25 agents have their highest delay per
packet delivered for the N = 25 and X.s; = 30m scenario which is the most disconnected scenario
considered in our simulations (see Fig. [5). Due to the few neighbors and relatively long inter-meeting
times between pairs of devices for this scenario, including temporal neighborhood features would be
beneficial, as would be considering predicted future neighbors when choosing next hop actions.

Impact of context features. While ry,.4,,smi: penalizes packet transmissions, the context history
features themselves do not directly penalize transmissions. Instead, the context history features
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Figure 4: Testing performance, varying the number of devices IV and the transmission range Xtest. The DRL
strategies were each trained on a N¢rqin = 25 and Xirqin = 50m network scenario, for 7¢rqnsmit = —2 and

two different amounts of context history. Each point is the average of 50 simulation runs; 95% confidence
intervals are shown but are very small. We observed all packets delivered by the end of each run for all strategies.

augment the state space to add context when actions are taken and ensure that actions that lead to
unnecessary looping can be more easily identified. Fig. [ shows that the DRL25 agent with no
context history (Npistory = 0) has a consistently higher number of forwards per packet delivered
than the DRL25 agent with context history (Vy;st0ry = 5) despite having a similar delay per packet.

5 Conclusions and Future Work

In this work, we have shown that it is possible to use DRL to learn a scalable and generalizable
forwarding strategy for mobile wireless networks. We leverage three key ideas: i) packet agents,
ii) relational features, and iii) a weighted reward function. Our results show that our DRL agent
generalizes well to scenarios on which it was not trained, often achieving delay similar to the optimal
strategy and outperforming all other strategies in terms of delay including the state-of-the-art seek-and-
focus strategy [56]]. The key ideas of our approach are generally applicable to other decision-making
tasks in mobile wireless networks.

There are a number of research directions we would like to explore in future work. While we
considered many features in this work, we would like to use feature ablation to understand which
features most impact forwarding performance. We expect that as the kinds of mobility the DRL agent
sees become more diverse, more features will also be needed to characterize the key differences in
mobility and enable the DRL agent to generalize to a wide variety of mobile networks. More generally,
we would like to expand our feature classes to include other features including alternatives to the
Euclidean distance feature. We would also like to explore device decision-making to complement
our packet agents. For instances, devices could learn which subsets of packets should get to make a
forwarding decision when a transmission opportunity arises. Finally, we would like to update our
reward function to incorporate additional network considerations such as fairness.
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Appendix

A Dynamics of the Mobility Traces Used in Simulations
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Figure 5: Quantifying the connectivity of the network scenarios considered in our simulation experiments.

Fig. [f]quantifies the connectivity of the network scenarios we consider in our simulations. In Figs.
Eka) and (b) we show that the different numbers of devices and transmission ranges we consider in
our simulation experiments encompass the continuum from disconnected to well-connected networks.
In Figs. Ekc) and (d), we show the inter-meeting time 7T, 4 and meeting duration M,, 4 of §@: these
metrics are computed online between each possible pair of devices, and so are independent of the
number of devices. For additional details about our simulations and extensive simulation results,
please see [36].

B Details of Utility and Seek-and-Focus Strategies

Utility-based forwarding [56]] maintains a timer at each device v for each device d in the network,
denoted as 7, (d), which is the time elapsed since device v last met device d, as illustrated in Fig @
We implemented the timer transitivity as defined in [56]]: when two devices, v and v encounter each
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Table 3: Parameters settings.

Symbol Meaning Utility ~ Seek-and-Focus
Ui, Utility threshold 10 100
Uy Focus threshold - 20
prob Random forwarding probability - 0.5
time_until_decoupling  Time before sending a packet back to a device - 10
Ttocus Max duration to stay in focus phase - 10
Tseek Max duration to stay in re-seek phase - 50
M, T, My, M3 Loy My,

A A A

< »le N Time
Tv(d) t RV d

Figure 6: Contacts between devices v and d, where 7, (d) is the raw timer (without transitivity) referred to in
the utility-based and seek-and-focus forwarding strategies [S6] for delay tolerant networks.

other, if 7, (d) < 7,(d) — t(dy,»), where t(d,, . ) is the expected time for a device to move a distance
of dy, .+, then 7,(d) is set to 7,(d) = 7,(d) + t(dy,,). As for many mobility models, a smaller timer
value on average implies a smaller distance to the device, the timer evaluates the “utility” of a device
in delivering a packet to another device. A device v chooses the next hop for a packet as follows:
v first determines which neighboring device, u, has the smallest timer to the packet’s destination,
d. If 7,(d) > 7.(d) 4+ Uy, i.e., the timer of v to destination d is larger than the timer of u to d by
more than the utility threshold, Uy, the packet is forwarded to device u; otherwise, the packet is not
forwarded. We optimize Uy, for Nipqin = 25 and Xy,q4, = 50m, which are the same settings on
which the DRL agent used in testing was trained; the parameter value we use is shown in TableE}

Seek-and-focus forwarding [56]] combines the utility-based strategy (focus phase) and random
forwarding (seek phase). If the smallest timer (among all neighboring devices) to the destination is
larger than the focus threshold Uy, the packet is in seek phase, forwarded to random neighbor with
probability prob. Otherwise, the packet is in the focus phase, and the carrier of the packet performs
utility-based forwarding with utility threshold Uy,. In addition to Uy, prob, and Uy, Seek-and-focus
has three more parameters: the time_until_decoupling which controls the amount of time a device is
not allowed to forward a packet back to a device it received the packet from, Tty s Which controls
the maximum duration to stay in focus phase before going to re-seek phase (random forwarding of
the packet to get out of a local minimum), and 7. Which controls the maximum duration to stay in
re-seek phase until going to seek phase (random forwarding of the packet until reaching a device with
timer smaller than Uy). We optimize these parameters for Ny;.qi, = 25 and X445, = 50m, which
are the same settings on which the DRL agent used in testing was trained; the parameter values we
use are shown in Table. Bl

15



	Introduction
	Related Work
	Learning an Adaptive Forwarding Strategy
	Packet Forwarding Using DRL
	Mobile Network Features
	MDP Formulation

	Simulation Results
	Methodology
	Forwarding Strategies Compared
	Evaluation Results

	Conclusions and Future Work
	Dynamics of the Mobility Traces Used in Simulations
	Details of Utility and Seek-and-Focus Strategies

