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Abstract

Reinforcement learning is an exciting possibility for generating music because of its ability to learn
without explicit examples and to produce more than one response in a given state. We use rein-
forcement learning in the second phase of a jazz improvisor that learns to interactively play jazz
with a human. The reinforcement signal is based on rules for improvisation. Because of time de-
lays between note played and subsequent reinforcement, a critic adjusts the reinforcement signal.
We describe this system and then examine the ability of a temporal difference critic to predict rein-
forcement for three different sequential musical phenomena. A nonlinear network with a linear TD
output unit and context traces on input is able to successfully predict reinforcement values for these
sequences and shows promise for use in musical reinforcement learning tasks.

1 Foundations

Jazz improvisation is the creation of a jazz melody in real time. Charlie Parker, Sonny Rollins et al. were founders of
bebop and post bop jazz [11] where drummers, bassists, and pianists keep the beat and maintain harmonic structure.
Other players improvise over this structure and take turns improvising for 4 bars at a time. This is called trading fours.
We have been researching neural network-based improvisors. Artificial neural networks have been used in computer
music [14, 16] and e.g. Todd [15] used a recurrent network to learn to reproduce short classical songs and then produce
new ones. Todd’s work is the basis for the first phase of our two-phase learning system. First, a recurrent network is
trained with back-propagation to play three jazz melodies by Sonny Rollins [1]. This network is a modified version
of the network Todd developed and it has traded fours with a human player in real time. We will describe it briefly in
Section 2. In phase 2 an actor-critic reinforcement learning configuration enables the machine to use the first network
but to improve its improvisation ability by trying actions and then receiving reinforcements for them, according to a set
of rules (Section 4). We examine these rules and then consider a subset of sequential prediction problems covered by
these rules. We show results of prediction of reinforcement for these sequences when using a TD-based nonlinear critic
with function approximation accomplished via a nonlinear neural network. This work is described in Sections 4 and 5.
We include an appendix (Section 6) on a basic description of jazz improvisation.

2 Phase 1

In Phase 1, supervised learning is used to train a recurrent network to reproduce the three Sonny Rollins melodies.
The network is a Jordon net [7] with linear output units and nonlinear hidden units (logistic function). Chords provide
the harmonic structure of a song, and the chord over which current notes lie is input to the network (Figure 1). 24 of
the 26 outputs are notes (2 chromatic octaves), the 25th is a rest, and the 26th indicates a new note. The output with
the highest value above a threshold is the next note, including the rest output. The new note output indicates if this is a
new note, or if it is the same note being held for another time step (

�������
note resolution). More details of this phase are

given in [4, 5]. The network learns to produce each of the three songs as well as all three songs in sequence. Success is
measured by noting dramatic decreases in the squared error as well as comparing the music score of the ANN version
of the song with the original. And of course listening to the song provides aural feedback as well. In trading fours
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Figure 1: Jordan recurrent net with addition of chord input

with the trained network, human note events are brought in via the MIDI interface [9]. Four bars of human notes are
recorded and then given, one note event at a time, to the context inputs (replacing the recurrent inputs). The plan inputs
are all 1. The three songs are similar in harmonic structure and the chord inputs follow one of them. The machine
generates its four bars and they are played in real time. Then the human plays again, etc. An accompaniment (drums,
bass, and piano), produced by Band-in-a-Box software (PG Music), keeps the beat and provides chords for the human
to hear. The interaction has been analyzed by following the resulting musical score (again, see [4, 5]). The machine
plays certain notes in places where they appear in the original songs. There are notes that appear quite frequently
in the Rollins songs and so appear often in the machine’s music. The rhythm (produced indirectly by choosing rests
instead of notes) follows the human’s by changing slowly when the human’s previous 4 bars are changing slowly, and
changing quickly when the human’s does so.

3 Phase 2

In Phase 2, the network is expanded and trained by reinforcement learning to improvise according to the rules of
Section 4 and using its Phase 1 knowledge of the Sonny Rollins songs. Using actor-critic reinforcement learning
([2, 12, 17]), the actor chooses the next note to play. The critic receives a reinforcement signal � from the critique
made by the rules. Figure 2 shows the Phase 2 network. The figure shows a configuration in which the critic is ”piggy-
backed” onto the nonlinear network, and uses the features learned from the action network. The same inputs plus 26
human inputs used during training and trading fours brings the total to 68. The weights obtained in phase 1 initialize
this network. The reinforcement learning algorithm used is called SSR [3, 5]. It is a real-valued output algorithm
derived in part from the prior work of [6, 17]. The piggy-back configuration also alleviates the computational burden
for real time operation. In a typical example using the phase 1 network prior to phase 2 improvement, the average
reinforcement value -.37 (on a scale from -1 to 1). After Phase 2, the average reinforcement value is .28 after 30-
100 off-line presentations of the human solo of 1800 note events. In the resulting machine improvisations, the note
durations are shortened, reflecting the rules to prevent settling onto one note. The machine plays chord tones, retains
notes used heavily in Rollins’ melodies, and due to its recurrence, produces a recurring motif with small variations,
an artifact of a “good” jazz solo. The phase 2 network has been used to interact with a human in real time while still
learning. It keeps its recurrence since the human has a separate set of inputs.



Figure 2: Phase 2 network with critic “piggy-backing” on hidden layer.

4 Nonlinear TD network

The rules used to critique the actions and produce the reinforcement signal are described here and in the appendix
within the framework of a very basic description of jazz theory. Using reinforcement values of very bad (-1.0), bad
(-0.5), a little bad (-0.25), ok (0.25), good (0.5), and very good (1.0), the rule set is:
1) Any note in the scale associated with the chord is ok (except as noted in rule 3).
2) On a dominant seventh, hip notes 9, flat9, #9, #11, 13 or flat13 are very good. One hip note 2 times in a row is a
little bad. 2 hip notes more than 2 times in a row is a little bad.
3) If the chord is a dominant seventh chord, a natural 4th note is bad.
4) If the chord is a dominant seventh chord, a natural 7th is very bad.
5) A rest is good unless it is held for more than 2 16th notes and then it is very bad.
6) Any note played longer than 1 beat (4 16th notes) is very bad.
7) If two consecutive notes match the human’s, that is good.
8) Any other note is bad.
The machine’s improvisations are encouraging yet indicate a need to study critics’ ability to predict reinforcement for
isolated musical phenomena. Even without understanding the numerical music notatation, we can see that the critic is
required to count, in a fairly sophisticated manner. In a tabular state representation, a single weight value is associated
with each state and a separate TD predictor is assigned to each state. The problems that arise are the combinatorial
explosion of state entries with increasing complexity of state, and no generalization across states. As an alternative, a
function approximation tact can be taken in which some function of the states is used as the prediction. In the simplest
case a linear TD algorithm makes a linear approximation of the value of each state. It is our conclusion after re-
examining these rules and experimenting with TD(

�
) that a nonlinear TD with a neural network front end can predict

reinforcement for the counting task. In addition to counting, we decided to explore two other predictive musical tasks
for which TD could be useful, in which we use TD as the output unit of a nonlinear network and within a non-Markov
problem. The two phenomena are 1) the use of passing tones and 2) forward motion. In the passing tones task, a note
is played that must be resolved in one or two time steps by a note that ”works over” the current chord ( ��� ). The task
for TD is to predict a high reward when it sees the first unresolved note. In the forward motion task, the network is
given two ��� inputs. The first, ��� , corresponds to the current chord and the second, ��� corresponds to the next chord to
be played. TD must predict a high reward if a note is played at the end of a sequence over a chord �	� that it does not
work with, if the note it does work with is present on the second chord input, � � . Jazz improvisors will do exactly this.
While a chord is still being played by the rhythm section, an improvisor will play a note that sounds ”bad” at first. But
when the next chord is played, it is resolved and sounds even better than if a ”normal” note had been played over the
first chord. In fact both of these phenomena involve the rewarding of the introduction of musical tension, followed
closely in time by its release.

5 Results and Conclusions

We experimented with several approaches in using the TD algorithm in a gradient-descent based configuration with
variations in how the state is represented and where eligibility traces are used (decaying moving average filters). We
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Figure 3: Nonlinear TD network showing moving average on inputs

found the most successful to be a linear output unit that makes the prediction V(s) the linear weighted sum of the
outputs of the hidden layer units. TD is cast as the output unit of a gradient descent-based network [13, 8] minimizing,
for state vector � 465

�87:9 � $<; � ���>= $ � ���?� � (1)

where the TD prediction (output) is $ � ��� 5A@ ��CB�� �D� � � � �� E"��%��F (2)

Here, �G��� �� E" � � is the output of the H ��� hidden unit and " � is the vector of weights that connect the state vector � to the
hidden unit. These units are just the oft used vector dot product passed through the logistic function. The � � are the
weights connecting the hidden units to the TD output unit and they are updated using the TD algorithm shown here in
vector form as I � 5KJML8N ���O� �� C"��?��F (3)LP5

�.QSR $ � �+TU�V= $ � ��� is the TD error that is an approximation of � $ ; � ���D= $ � ���C� and the eligibility that is the
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distribution of reinforcements over time, also in vector form, isN ���O� �� C"��?� 5 �
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We also use a
�

eligibility trace on the weights (vector "�� ) connecting the state to each hidden unit, leading to the
weight update I "-� 5\JOL8N
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Because the logistic function is used, � T � �� E" � �
5 �G��� �� C" � � � � = �G��� �� C" � � . The last term in equation 6, �*� ��� is used

rather than � because the sum used in calculating each �`� is the dot product of the decaying averages �*� ��� of the state
inputs and the weight vector " � where �*� ���

5ba �*� �%� Q � � = a �?� . The TD eligilities are mechanisms for distributing
the reinforcement signal over the weights, over time. And the moving average trace, �*� �%� makes available a decaying
history over the past several time steps of the state inputs for feedforward prediction in these non-Markov tasks.
Nonlinear Counting Experiments
In this experiment, 20 sequences of five notes are used. 10 of the sequences consist only of note two (22222) and 10
sequences consist of two occurrences of note two randomly distributed within the sequence and three other random
notes (e.g. 23254). A set of 5 note indices are also given to the network, indicating where the current note is in the
sequence (e.g. 00001 for note 1, 00100 for note 3). A reinforcement of 1 is given on the last note in the sequence if the
sequence is 22222; otherwise a reinforcement of zero is given. Weights are initialized between -.33 and .33. 60 hidden
nodes are used and

Jc5 F d 9 ,
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5 F fhg . The following shows 4 typical sequences after training and
shows TD predicts high reinforcement as long as all values are 2:



2 V = 0.92 r = 0
2 V = 0.90 r = 0
2 V = 0.89 r = 0
2 V = 0.89 r = 0
2 V = 0.87 r = 1

1 V = 0.08 r = 0
2 V = 0.43 r = 0
6 V = -0.37 r = 0
2 V = -0.21 r = 0
4 V = 0.07 r = 0

1 V = 0.08 r = 0
3 V = -0.29 r = 0
5 V = -0.33 r = 0
2 V = -0.18 r = 0
2 V = 0.23 r = 0

2 V = 0.92 r = 0
2 V = 0.90 r = 0
5 V = 0.11 r = 0
4 V = 0.09 r = 0
8 V = 0.12 r = 0

1 V = 0.08 r = 0
5 V = -0.13 r = 0
6 V = -0.46 r = 0
7 V = -0.40 r = 0
4 V = -0.56 r = 0

Nonlinear Ordered Sequence Experiment
In this experiment 20 sequences of 5 notes are presented. There are 60 hidden nodes and chords are still not used. If
the sequence of 012 occurs, the reward of 1 is given at the last note in the sequence. Otherwise a reward of 0 is given.
The 012 sequence is presented one third of the time the time and otherwise values are presented in random order
(e.g. 251). Weights are initialized between -.05 and .05,

JS5 F d 9 ,
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5 F fhg . Typical results after
training are below. TD undeniably distinguishes 012 from 345. On 342, it ”favors” the 2 in the last position:

0 V = 1.54 r = 0
1 V = 1.81 r = 0
2 V = 2.14 r = 1

2 V = 1.91 r = 0
1 V = 1.62 r = 0
0 V = 1.83 r = 0

3 V = 1.20 r = 0
4 V = 1.03 r = 0
2 V = 1.59 r = 0

3 V = 1.20 r = 0
4 V = 1.03 r = 0
5 V = 1.00 r = 0

The result is somewhat subtle when comparing the similar sequences 210 to the favored 012. TD’s ability to distinguish
them appears in its prediction reinforcement for the value 2, which is significantly higher when following 01.
Forward Motion - Switching Chords
In this experiment the network is presented with 4 consecutive 3 note sequences. The note 0 works well over the chord
� � =10001010010 (chords are represented as 12 inputs, 4 of which have value 1 and correspond to the 4 notes of the
chord). However, 0 does not work well over chord � � =101000100100. The number of presentations is 60,000 (a larger
number of rounds produced oscillating behavior), there are 20 hidden nodes, 22 different sequences are presented, and
3 different chords are presented (and the notes in the chords are mututally exclusive). Weights are initialized to values
between -.05 and .05 and

JS5 F d 9 ,
ac5 F � ,

�
5 F � , and R

5 F f�g . Below is a table showing 6 consecutive sequences.
For each sequence, 2 chords are given, e.g. chord � � for the first sequence and ��� for the next chord. The network is
given both chords as inputs and the table of results below shows these 2 chords for each sequence. 0 appears as the last
note of sequence two (10 is the first note of the third sequence). We can see 0 in this position in columns 2, 5, and 6.
TD predicts high reinforcement for 0 in this position regardless of the next chord. However, sequences over the chord
� � following the sequence with 0 (see column 3) receive a higher predicted reward than others. So TD has determined
that 0 in position 3 is good and that chord ��� is good after a 0 but has not managed to put them together quite as we
desire yet.

c2,c0
9 V = 1.39 r = 0
2 V = 1.37 r = 0
5 V = 1.36 r = 0
11 V = 1.33 r = 0

c0,c2
11 V = 1.34 r = 0
1 V = 1.33 r = 0
0 V = 1.70 r = 0
10 V = 1.51 r = 1

c2,c0
10 V = 1.50 r = 0
2 V = 1.48 r = 0
9 V = 1.47 r = 0
11 V = 1.44 r = 0

c0,c1
11 V = 1.45 r = 0
6 V = 1.40 r = 0
4 V = 1.37 r = 0
1 V = 1.33 r = 0

c1,c0
1 V = 1.48 r = 0
11 V = 1.48 r = 0
0 V = 1.88 r = 0
6 V = 1.62 r = 0

c0,c1
6 V = 1.33 r = 0
6 V = 1.33 r = 0
0 V = 1.73 r = 0
6 V = 1.45 r = 0

Our goal here was to study how to use the TD reinforcement prediction algorithm with a nonlinear network that
backpropagates the TD error. Furthermore, we pushed this combination by presenting problems that are non-Markov
prediction problems based on musical phenomena. We would like to pursue the last experiment, context-switching, to
ijmprove the results, but overall see this use of TD as a promising one for the generalization of reinforcement learning
in domains that require function approximation and that contain non-Markov tasks. Experimentation continues for
these problems as well as experimentation on using the SARSA algorithm to learn to generate the sequences.

6 Appendix: A Basic Tutorial and Rules for Jazz Improvisation

The harmonic structure of a jazz song is a series of chords (groups of notes played simultaneously). Chords differ by
the number of steps or half-steps between the notes as they appear in the chromatic scale. Several important chords
are the major triad, minor triad, and the diminished triad, all being 3 notes separated by a set number of half-steps
called thirds. A third added to one of these triads forms a seventh chord: the major seventh chord (F-A-C-E is F major
seventh or Fmaj7), the minor seventh chord (e.g. Fm7 is F-Ab-C-Eb (Fm7)), and the dominant seventh chord (F7 is
F-A-C-Eb), respectively. These chords are used heavily in jazz harmony.

A scale, a subset of the chromatic scale, is characterized by note intervals. E.g., the F major scale is F-G-A-Bb-C-D-
E-F. The notes in a scale are degrees; E is the seventh degree of F major. Roman numerals represent scale degrees



and their seventh chords. Upper case implies major or dominant seventh and lower case implies minor seventh [11].
The major seventh chord starting at the first note of a scale is the I (one) chord. G is the second degree of F major,
and G-Bb-D-F is Gm7, the ii chord, with respect to F. The ii-V-I progression is prevalent in jazz [11], and for F it is
Gm7-C7-Fmaj7. The minor ii-V-i progression is obtained in a similar manner. Most jazz compositions are either the
12 bar blues or sectional forms (e.g. ABAB, ABAC, or AABA) [10]. The 3 Rollins songs are 12 bar blues. “Blue
7” has a simple blues form. In “Solid” and “Tenor Madness”, Rollins adds bebop variations to the blues form [1].
ii-V-I and VI-II-V-I progressions are added and G7+9 substitutes for the VI and F7+9 for the V; the II-V in the last
bar provides the turnaround to the I of the first bar to foster smooth repetition of the form. The result is at left and in

Roman numeral notation at right:
Bb7 Bb7 Bb7 Bb7
Eb7 Eb7 Bb7 G7+9
Cm7 F7 Bb7 G7+9 C7 F7+9

I I I I
IV IV I VI
ii V I VI II V

One way a novice improvisor can play is to associate one “standard” scale with each chord and choose notes from
that scale when the chord is presented in the musical score, whence Rule 1. Next, the 4th degree of the scale is often
avoided on a major or dominant seventh chord (Rule 3). The major 7th is avoided even more on a dominant seventh
chord (Rule 4). Rule 2 contains many notes that can be added. Seventh chords can be extended by adding major or
minor thirds, e.g. Fmaj9, Fmaj11, Fmaj13, Gm9, Gm11, and Gm13. Any extension can be raised or lowered by a half
step [11] to obtain, e.g. Fmaj7#11, C7#9, C7b9, C7#11. The C7 in Gm7-C7-Fmaj7 may be replaced by a C7#11, a
C7+ chord, or a C7b9b5 or C7alt chord [11]. The scales for C7+ and C7#11 make available the flat 5, and flat 6 (flat
13) for improvising. The C7b9b5 and C7alt (C7+9) chords and their scales make available the flat9, raised 9, flat5 and
raised 5 [1]. These substitutions provide the notes of Rule 2.
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