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Abstract

Consider a multi-hop wireless network in which devices act as anonymizing routers. Even if devices anonymize their link trans-
missions, an adversary may still be able to infer key information by observing the traffic patterns in the network. In this work, we
quantify how well an adversary can infer unlinkability, that is, the probability that different pairs of devices are communicating,
from anonymized link transmissions. We first propose a metric to compute unlinkability using a Kalman-filter based adversary.
Using this metric, we then evaluate how different network characteristics impact unlinkability. We assume that devices do not re-
order packets to mix traffic and thereby increase unlinkability. Instead, we show that traffic mixing is still possible due to the use of
multi-hop routing and broadcast transmissions, with the amount of mixing dependent on the network characteristics. In simulation,
we find that i) for unicast links, as network connectivity increases unlinkability decreases, while for broadcast links, as connectivity
increases unlinkability increases, ii) link dynamics tend to increase unlinkability with unicast links but decrease unlinkability with
broadcast links, iii) well-connected topologies, particularly with broadcast links, achieve the same level of unlinkability with fewer
transmissions per packet delivered, iv) a lattice topology has consistently good unlinkability in different scenarios, and v) hetero-
geneous network traffic gives higher unlinkability and better anonymization efficiency than uniform traffic, even when the average
rate of traffic is the same.
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1. Introduction the probability that different pairs of devices are communicat-
s ing (see §2.1)), given the anonymized link transmissions. We

Rather than relying on fixed infrastructure like Internet  assume that the devices in the multi-hop wireless networks we
routers or cell towers to relay traffic, in a multi-hop wireless consider do not mix (i.e., reorder) traffic, unlike a mix network
network devices relay traffic for each other in a peer-to-peer  [4]. Instead, we hypothesize that traffic mixing is still possible
fashion. Lack of infrastructure not only makes multi-hop wire-  due to the use of multi-hop routing and broadcast transmissions
less networks easier to deploy, it also increases privacy. Forw (see Fig. [I]and §2.2). The amount of traffic mixing that is
instance, devices can avoid communication over infrastructure ~ possible should depend on the flows present, the network con-
that may be monitored [} 2], and users can better control the nectivity, the link dynamics, and the routing strategy. It is these
distribution of their data by ensuring that any collected data is ~ network characteristics whose influence on traffic mixing and

stored locally. thus unlinkability that we investigate in this work.

Consider then a multi-hop wireless network in which devices 4 To quantify unlinkability, we assume a global adversary that
act as anonymizing routers. Even if devices anonymize their  passively eavesdrops on the anonymized packet transmissions
link transmissions an adversary may still be able to infer im- on each link. The adversary uses these transmissions to com-
portant information by observing the traffic patterns in the net-  pute a probability distribution over the possible communicating

work, such as which pairs of devices are communicating. This pairs of devices. We formulate the adversary as a Kalman filter
is problematic since in many multi-hop wireless networks, dif- ,, to compute this distribution and derive an unlinkability met-
ferent devices have different roles (e.g., sources vs. sinks in ric. We then introduce the idea of anonymization efficiency to
a sensor network) and some devices are more critical to net- quantify the efficiency of unlinkable communication in differ-
work functionality (e.g., a military commander) than others. If  ent network scenarios.
an adversary can identify such devices it can prevent important
information from reaching its destination.

Given this network scenario, our goal is to quantify what im-
pacts how well an adversary can infer unlinkability [3]], that is,

In simulation, we confirm that traffic mixing does occur even

«s when devices themselves do not mix traffic. We show that i)

for unicast links, as network connectivity increases unlinka-

bility decreases, while for broadcast links, as connectivity in-

creases unlinkability increases, ii) link dynamics tend to in-

" - crease unlinkability with unicast links but decrease unlinkabil-
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(a) Internet routing and flow interleaving. On
the Internet, devices are only either end-hosts or
routers, and only end-hosts are sources or destina-
tions of traffic. Flows from different end-hosts may
cross at a router, but incoming traffic at the router
matches outgoing traffic. E.g., traffic from Source 1
and Source 2 cross at Router R1, but the incoming
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(b) Multi-hop routing and flow interleaving. In a
multi-hop wireless network, devices are both end-
hosts and routers, and so any device may be the
source or destination of traffic as well as a router.
Like on the Internet, flows from different devices
may cross at a device operating as a router. E.g.,
traffic from Source 1 and Source 2 cross at Device
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(c) Multi-hop routing and packet interleaving.
Only with multi-hop routing will packet interleav-
ing happen at a device. For instance, Device B is
both a source of packets (for Source 2) and for-
warder of packets (for Source 1). Consequently,
the incoming packets at Device B are different than
the outgoing packets, due to interleaving of Source

and outgoing traffic at R1 is the same. B.

1 and Source 2 packets.

Figure 1: Illustration of how multi-hop routing supports packet mixing. A flow is a set of packets sent from a source to a destination over a sequence of links (i.e.,

path). Two-way communication requires two flows, one in each direction.

ity with fewer transmissions per packet delivered, iv) a lattice
topology has consistently good unlinkability in different scenar-
ios, and v) heterogeneous traffic gives higher unlinkability and
better anonymization efficiency than uniform traffic, even when es
the average rate of traffic is the same.

The rest of this paper is structured as follows. In §2] we
explain how traffic mixing can happen in multi-hop wireless
networks. In §3] we review related work. In §4] we describe
our Kalman filter adversary. In §5| we show how we use our s
Kalman filter adversary to derive an unlinkability metric and
propose the idea of anonymization efficiency. In §6] we eval-
uate our unlinkability metric in simulation. Finally, in we
summarize our contributions.

95

2. Background

2.1. Computing Unlinkability

In this work, we focus on multi-hop wireless networks in'”
which devices act as anonymizing routers. To anonymize trans-
missions, devices re-encrypt [3] packets at the network layer,
and set link layer addresses in such a way as to hide the in-
tended next hop of a packet yet still allow this hop to process
the packet. We assume devices do not mix traffic, but, as we
shall see in §2.2 and quantify in this paper, traffic mixing can,,
still happen.

In the anonymity literature, the adversary’s goal is to com-
pute the unlinkability of a packet’s source with its destination
[3]. Unlinkability is also known as relationship or source-
destination anonymity. To enable unlinkable communication,
Chaum [4] proposed mix nodes that re-order and re-encrypt theio
messages passing through them to hide the message paths, and
the idea of onion routing used in Tor [6], where messages are

encrypted multiple times, each layer of encryption correspond-
ing to the next hop to which the message is to be forwarded. In
mix networks, mixing of messages at nodes is done to decorre-
late input traffic from output traffic. When mixing is not done
(e.g., as in Tor to reduce user latency), timing attacks can poten-
tially be used [7, [8] to accurately correlate a message’s source
with its destination.

In the network tomography literature, the problem of traffic
matrix inference [9}[10}[11] is similar to that of unlinkability but
does not consider explicit obfuscation of traffic patterns. Ad-
ditionally, such inference usually considers aggregated traffic,
and assumes it is possible to periodically obtain the true traffic
matrix at some cost, which is useful for training an inference
algorithm.

In this work, we assume a global adversary uses the packet
transmissions it passively observes over links to compute a
probability distribution, i.e., the flow distribution, over the pos-
sible flows, see Fig. [I] Because this adversary cannot parse any
packet header or payload data it does not know which flows
are present. Assuming a passive adversary actually makes our
problem harder, not easier, since our goal is to be the adversary
and compute unlinkability, rather than to design mechanisms to
increase unlinkability.

2.2. What impacts traffic mixing?

We assume that the devices in the multi-hop wireless net-
works we consider do not mix traffic. For instance, if traffic
is rare or high delays are problematic, it may be infeasible for
devices to wait for sufficient packets in their queues so that the
packets can be reordered. Instead, we conjecture that traffic
mixing is still possible due to the network features below. Our
focus in this work is specifically on the impact of multi-hop
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routing, broadcast transmissions, network connectivity, link dy-
namics, and traffic heterogeneity on traffic mixing.

2.2.1. Multi-hop routing

Due to multi-hop routing, every device may be the source or'®
destination of a flow, and hence packet, even though that device
may also forward packets on flows to or from other devices.
Thus, not every packet entering a device will leave it, and ev-
ery packet leaving a device may or may not have been sourced
by the device. We call this packet interleaving, see Fig. [[fc)."”
Because of packet interleaving, the adversary must consider all
possible devices along a path as possible sources and destina-
tions of traffic. Flow interleaving, when two flows cross at a
device, see Fig. [I(b), increases packet interleaving.

2.2.2. Wireless links

The MAC protocol used to access a wireless link typicallys
has a component introducing random delays. Because wireless
transmissions interfere, a device may attempt (typically up to
7) re-transmissions of the same packet at random backoff times,
interleaved with transmissions from other devices, to cope with

collisions. Thus, the dwelling time of packets at devices is vari-1
able.

2.2.3. Broadcast transmissions

Wireless transmissions may be unicast (unidirectional) or
broadcast (omnidirectional). When a wireless device trans-
mits a packet using a broadcast transmission, all devices within
range receive the transmission, not just the intended recipient.
A receiving device then determines whether it is the intended
recipient by checking the packet destination address. Thus, to
an outside observer, which neighbor device is the intended re-
cipient may be unclear, assuming no control traffic such as ac-
knowledgements are sent upon receipt.

2.2.4. Network connectivity 185

Well-connected topologies should support higher traffic mix-
ing, due the flow of traffic on the topology itself, and thus
unlinkability. In our simulations in §6] we measure network
connectivity using algebraic connectivity, 1, which is defined
as the second-smallest eigenvalue of the normalized Laplacianaoo
matrix of a graph [12]. The larger the value of A,, the more
well-connected is the graph.

2.2.5. Link dynamics

Due to wireless interference, fading, or mobility the network™
connectivity may change, and consequently, the pattern of wire-
less transmissions observed by an adversary may change, even
if the underlying set of flows stays the same.

210
2.2.6. Multiple packet copies
Flow correlation attacks typically assume a single copy of a
packet. To cope with link dynamics, a multi-hop routing strat-
egy may transmit multiple packet copies.

2.2.7. Traffic heterogeneity

Different flows may have different characteristics, such as
packet arrival rate, source-destination distance, and duration.
The amount of traffic heterogeneity affects how well an adver-
sary is able to infer unlinkability, and may even make it easier
to infer that some pairs of devices are communicating, while
simultaneously making it harder to infer that other pairs of de-
vices are communicating. For instance, consider a scenario in
which one flow has a high arrival rate, while all others have low
arrival rates.

3. Related Work

Existing unlinkability metrics [13} 14} 115,16} 17, 18] are not
suitable for our work, as they do not give a straightforward way
to compute unlinkability for arbitrary network scenarios or con-
sider multi-hop routing or link dynamics. Other works have de-
signed protocols for unlinkable [[19, 20,21} 22]] and anonymous
[23L 24} 25 126} [18]] communication for multi-hop wireless net-
works, but do not give us a way to compute unlinkability. This
motivates our derivation of a new metric in Sections 4| and
based on a Kalman filter adversary.

Works [27, 28] on inferring unlinkability for anonymous
wireless and mobile ad hoc networks correlate and aggregate
link layer frames into traffic matrices over time. In compari-
son, we focus on performing inference at the network layer and
build a statistical model that explicitly incorporates adversary
knowledge and lets us quantify unlinkability in many different
network scenarios.

Work [29] similar in spirit to ours but in mix networks builds
a probabilistic model to infer unlinkability using user selected
mix path lengths and mixing strategies to compute the model
probabilities. Due to computational constraints they focus on
smaller static networks and consider up to 10 mixes. In com-
parison, our Kalman filter model allows us to more directly in-
corporate different multi-hop routing strategies, as well as con-
sider the impact of different network characteristics, including
link dynamics. While we are also affected by computational
constraints, we look at networks with up to 25 devices.

In our work, we use a biased random walk routing strategy to
limit control overhead and handle topology changes, see
This strategy lets us further quantify the benefits of anonymous
broadcast [30] on unlinkability, and the additional impact of
multi-hop routing. Other works [25, 31} 32] on anonymous
communication have also considered a random walk routing
strategy, but here our focus is not to design a new anonymous
routing strategy, but to understand how routing randomness im-
pacts unlinkability.

In comparison to works on traffic matrix inference [9},[10}[11]],
not only do we consider traffic obfuscation and multi-hop rout-
ing, we also focus on inferring individual flows in multi-hop
wireless networks with potentially dynamic topologies. We also
expand on our work in [33]] to consider other traffic characteris-
tics here: we evaluate the impact of traffic heterogeneity on un-
linkability and add both throughput and queue length analysis.
While our model has similarities with the Kalman filter based
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approach of [[L1], those authors operate under the assumption
that their model can be initialized using the true traffic matrix
and instead their goal is to track how traffic in this traffic matrix
changes over time.

Works examining the impact of network topology in the con-
text of anonymity primarily focus on identifying which mix
topologies are more vulnerable to attack or enable faster mix-
ing [16, 134,135,136} 131]] or the interplay of mix connectivity with
dummy packets for padding [35]. Of particular interest to us
are works identifying well-connected topologies like expander,_
graphs [34, 36]], and scale-free and small-world topologies [36]]
as being mix topologies that support efficient mixing in terms
of message path lengths. Here, however, our focus is to under-
stand not just the impact of connectivity on unlinkability but
also the impact of other network characteristics. ,

Recent mix network implementations [2]] ensure unlinkabil-
ity even when both the entry and exit nodes are controlled by
an adversary, unlike Tor [6]]. Other work on mix networks [37]]
looks at adding noise to protect against traffic analysis. Mix
networks as well as the Tor onion routing overlay are typi-
cally constructed using end-hosts, which can be both sources
and destinations of traffic as well as traffic relays, but these im-275
plementations still rely on the Internet to route traffic between
relays.

When Tor onion routing is implemented at the network layer
[38]] and mixes are instead high-speed routers, the mix network
comprises only routers. Our model could thus be viewed as,_
a multi-hop wireless network in which every device is both a
wireless Tor node operating at the network layer and a possi-
ble source or destination of traffic. In our scenarios, though,
not only can the number of relays be much larger than the three
used in Tor, the next relay to use can change depending on net-
work dynamics and multi-hop routing, while broadcast wireless™
transmissions further protect against traffic analysis.

4. Kalman Filters for Flow Inference
290

We now overview how we use a Kalman filter [39. 40]] to
obtain the flow distribution. Computing the flow distribution
is generally a computationally intensive task. The primary rea-
son why we use a Kalman filter to model our states and obser-
vations with continuous rather than discrete random variables
(like in a hidden Markov model) is to make our computations,,
more efficient. Our goal, however, is not to propose Kalman
filters as a real-time adversary for flow inference, but instead
make meaningful comparisons of the unlinkability of different
network scenarios.

300

4.1. Kalman Filter

Kalman filters originated in the target tracking literature and
assume the true location (state) of a tracked object is unob-
servable (hidden) and modeled as a Gaussian random variable.sos
Noisy observations of the true state are assumed to be avail-
able and are also modeled as a Gaussian random variable. The

Kalman filter update equations are thus given as follows.
Xl = AX, + W, (1
Yy =Bx; +v, ()
Let the initial state be xo ~ N[y, X]. Then the state X, is a
linear function of x, plus some Gaussian noise w; ~ N[0, Q].
The observation y, is similarly a linear function of the state x,
plus some Gaussian noise v, ~ N[0, R]. The transition matrix
A transforms the current state X, to the next state x;,. The ob-
servation matrix B transforms the current state x; to the current
observation, y,. When the assumptions of linearity and Gaus-
sian noise are true, the Kalman filter is an optimal estimator of
the state.
In the rest of this section we describe how we set-up a
Kalman filter to solve the flow inference problem.

4.1.1. States X, X; and Covariances X, Q

We model a multi-hop wireless network as a graph, G =
(V,E), where N = |V| is the number of devices and E is the
set of links. In a network with N devices, there are at most N?
possible flows including those whose source and destination are
the same device. Since which flows are present is unknown, we
model all possible flows. We include the possibility of self-
flows as this gives more flexibility to the model estimation: for
instance, self-flows could correspond to cover traffic or to de-
vices holding onto packets for extended periods of time.

We define the state X, to be a vector of length 2N?. The first
N? states represent the total traffic on each of the N? possible
flows up to time 7. The next N states represent the traffic ar-
rivals on each flow. While it would be natural to have the state
additionally model the total traffic at each device for each flow
at each timestep, we do not do this since it makes inference
intractable as the state space size increases to 2N> from 2N?.

We set each entry of the initial state vector, u, to 1/2N 2 We
set the 2N? x 2N? initial covariance matrix, X, to the identity
matrix times 0.1. We set the 2N? x 2N? covariance matrix, Q,
to the identity matrix.

4.1.2. Observationy, and Covariance R

In a network with N devices, there are at most N2 possible
links including self-links. While we assume which links are
present in the network is known, which links exist or have traffic
on them may change over time, and so we must model all links.
We include self-links as these could model cover transmissions
or delaying of transmissions.

We define the observation y; to be a vector of length N? rep-
resenting for each link, the total traffic transmitted up to time
t. We consider both unicast and broadcast wireless links. For
broadcast links, we assume all unicast links incident to a device
are activated during packet transmission, and so all dimensions
of y, corresponding to those links will have traffic on them. We
set the N2 x N2 observation covariance matrix, R, to the identity
matrix.
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4.1.3. Transition Matrix, A 355
The transition matrix A is of size 2N? x 2N? and maps states
from one timestep to the next. We assume traffic from one flow
never switches to another flow, and that traffic currently on a
flow accumulates over time. We set the entries of A as follow,
where src(i) indicates the source device for flow i and dst(i)

indicates the destination device for flow i. 360
1 ifi=j
A = 1 if j= N? +iand src(i) # dst(i) 3)

0, otherwise

365
The first N> elements in x, keep track of the total traffic on each

flow, while the next N? elements in x, keep track of the new
traffic arrivals on each flow. Intuitively, when A is multiplied
with x,, the result is the following. The total traffic on each flow
in x, is multiplied with the diagonal elements of A while the
new traffic on each flow is multiplied with the elements above
the main diagonal of A. The results are then summed together,
giving the new total traffic on each flow.

4.1.4. Observation Matrix, B

The matrix B is of size N? x 2N2, where rows are the total
traffic sent over each link and columns are the total traffic and
arrivals on each flow. We set the entries of B directly given
assumptions about i) the multi-hop routing strategy in use and
ii) the network connectivity. 380

In our simulations in §6] we use a ¢-randomized routing
strategy that forwards packets to the next device on the short-
est path (or stays at the current device) with probability ¢ and
forwards packets to a random neighbor device with probability
1 —¢. A packet’s path terminates once it reaches its destination.
Setting ¢ = 1 gives shortest path routing and lets us quantify
how much unlinkability exists even when devices do not them-
selves mix traffic. Setting ¢ = 0 gives a random walk and lets us
quantify the unlinkability gained due to randomness in the rout-
ing strategy. Essentially the time to deliver a packet is the first
passage time from the source to destination for a random walk
parameterized by ¢. If the packet reaches its destination before®®
mixing has occurred, then unlinkability will not be maximized.
If the packet reaches its destination after mixing has occurred,
then unlinkability will be maximized but will possibly use more
transmissions than necessary.

When setting the entries of B, however, the adversary as-
sumes only shortest path routing is used and has no knowl-
edge of ¢. The adversary does, however, know the true network?®
topology. Let src(j) be the source device of flow j and let dst(j)
be the destination device. Let snd(i) be the sending device on
link i and let rcv(i) be the receiving device. Nbr(k) indicates
the set of neighbor devices for device k and R{src : dst} indi-
cates the set of devices comprising the shortest route between a5
source device, src, and destination device, dst. We then set the
entries of B as follows.

375

1, if snd(i) # dst(j), rev(i) € Nbr(snd(i)),
and rcv(i) € R{src(j) : dst(j)}
0, otherwise

B, = 4)

Intuitively, for each possible sending device snd(i), B gives
the next hop receiving device rcv(i) for packets on flow j.

4.2. Flow Inference

The Kalman filter lets us compute the maximum likelihood
estimates of the flow state given the observed link transmis-
sions, assuming the linear Gaussian assumptions hold.

Given a Kalman filter with its parameters set for a net-
work scenario and a sequence of observations y;.r, we can re-
cursively compute the probability distribution P(x,|y;./). This
distribution remains Gaussian and the computation remains
tractable even with many observations. Let fir be the mean
of this distribution and let ur be the vector containing the first
N? values of fir, corresponding to the estimates of the total traf-
fic on the N? possible flows. We use yf to derive a probability
distribution over flows, Pr.

We perform one post-processing step: any entries in up that
are negative are set to zero, since negative amounts of traffic on
a flow are not feasible. We conjecture several reasons for the
presence of negative entries. First, from inspecting the values
of up, negative entries seem to arise in part for flows that don’t
exist but that are sub-flows of flows that do exist, and so may
capture the removal of traffic at one device and the transfer to
another device. Second, our problem formulation is unlikely to
strictly satisfy the linear, Gaussian assumptions of the Kalman
filter and so negative entries may be a consequence of numerical
approximations.

We compute the flow distribution Pg as follows, where pp(7)
is the total traffic on flow i and P (i) is the probability that the
ith flow had traffic.

R0)
) e ()

As the network size increases, the probability mass is more
finely dispersed over the possible states. We thus renormalize
P focusing on the most likely states. To identify these states,
we sort the probabilities and find the value, ming, at index 2F
in the sorted list, where F is the actual number of flows in the
network. We set all probabilities less than ming to zero and
renormalize Pr. Knowing F is strictly not necessary and any
cutoff point could be used.

Pr(i) = &)

5. Quantifying Unlinkability

Regardless of the adversary model, computing unlinkability
for a given network scenario is computationally hard, given the
large space of possibilities and limited adversary information.
Consequently, some kind of probabilistic model is necessary.
Here, we describe a new metric based on our Kalman filter ad-
versary.

5.1. Unlinkability Metric

We derive an unlinkability metric, U, by computing the total
variation distance between the flow distribution Pr and the true
distribution, Py. Total variation distance has range [0, 1] and so
U also has range [0, 1]. We use total variation distance rather
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than the Kullback-Liebler (KL) divergence, because the KL-
divergence is not a true metric (e.g., the distance from Py to
Pr could be different than the distance from P7 to Pr), and our
goal is a metric we can use to compare unlinkability in many
different network scenarios.

1 ¥
U=; ;w(i) — Pr(i)| (6)

We obtain a bound on the maximum unlinkability, U,,., by
computing U when Pp is set to the uniform random distribu-
tion, but excluding those flows for which the source and desti-
nation are the same device. While we considered self-flows in420
the Kalman filter computation, we do not consider them here
since we are interested only in how many “real” flows are cor-
rectly inferred. U,,,, can be viewed as a bound on the worst
performance of an intelligent adversary, but not the absolute
maximum unlinkability achievable, which would be achieved425
when all probability weight is put on flows that are not present.
In our experiments, the U,,,, values are typically in the range
of 0.9 to 1. Because U, can be less than one, for clarity, we
show the normalized unlinkability in our results computed as
follows.

U

Unorm = U
max

(Ms0
If Uporm > 1, this indicates that the adversary’s flow inference
is worse than uniformly random guessing.

Our use of normalization here is to provide a bound on the
performance of our adversary and give additional insight when
comparing the adversary’s performance in different networkuss
scenarios. In practice, normalizing the unlinkability by the per-
formance of a uniform random adversary may not always be
useful, and a more intelligent adversary could be used. For
instance, if there are few flows in the network, then the ad-
versary’s random guessing could be restricted to consider only
those devices that forward any traffic for any flow.

440

5.2. Anonymization Efficiency

A network’s characteristics impact both unlinkability and the
total link transmissions used to deliver traffic. For instance,
while additional transmissions from using a longer path to route
traffic from source to destination increases unlinkability, it re-
quires using network capacity above what is minimally required
to deliver the traffic over the shortest path. Alternatively, while
having every device retransmit every packet over a broadcast
link would maximize unlinkability, it would also be inefficient.

We would thus like to quantify the gains in unlinkability at
the cost of transmissions. To do this, we introduce a metric wesso
call anonymization efficiency, E, computed as follows, where
D,, is the total packets transmitted and Dy, is the total packets
delivered.

445

Unorm

E=——
Dtx/de

(8)ass

When computing E in our simulations, we assume infinite
capacities on links and infinite queues at devices. We focus
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Figure 2: Network topologies used in simulations.

solely on data traffic since the amount of control traffic gen-
erated by a routing strategy is strategy specific and a variable
and hard to optimize constraint. Instead, we assume that there
is no control traffic present, neither to set up routes nor any
acknowledgements that might be sent in response to received
data packets. It is true that knowledge of control traffic should
increase an adversary’s ability to accurately estimate the flow
distribution and consequently decrease unlinkability. However,
our interest in this work is not purely the absolute value of un-
linkability or anonymization efficiency, but how unlinkability
changes in different network scenarios.

6. Evaluation

Our simulations are done in R and run using the MIT Su-
perCloud and Lincoln Laboratory Supercomputing Center [41]].
We use the FKF (Fast Kalman Filter) package [42] as our
Kalman filter implementation. We next describe our simulation
set-up and then overview our simulation results.

6.1. Methodology

6.1.1. Network topology

We assume the adversary knows the network topology and
whether unicast or broadcast links are present. As shown in
Fig. 2] we consider four network topologies, with N = 25: 1)
line, ii) 4-degree lattice, iii) geometric random graph, and iv)
complete graph. To generate a geometric random graph, points
are randomly placed in a unit square. Then any points within a
given transmission radius are connected; we use relatively large
radii of 0.6 and 0.85 to ensure a connected graph.

6.1.2. Link dynamics

We consider scenarios where devices are stationary but the
links present may change. We use a 2-state Markov model for
the link dynamics: links are i.i.d. and stay up from one timestep
to the next with probability p (and transition from up to down
with probability 1 — p) and stay down with probability ¢ (and
transition from down to up with probability 1 — ¢). We initial-
ize the up or down state of each possible link according to the
steady-state probability that a link is up for the 2-state Markov
model, 7 = (1-¢q)/(2— p—q); on each timestep, we then update
the state of each link according to the model. The steady-state
probability, , tells us on average how much time a link spends
up, despite any transitions down that might have occurred.
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Figure 3: Examples of true (Pr) vs. inferred (Pr) flow distributions in line and
lattice topologies for N = 9. Results are for static (p = 1 and ¢ = 0) unicast
links, ¢ = 1, uniform traffic rate 4 = 0.5, and 7 = 200. The y-axes indicate
the 9 possible source devices and the x-axes indicate the 9 possible destination®”
devices. The value at a square (x, y) represents the (inferred) proportion of to-
tal network traffic sent from source y to destination x. In these plots, traffic
comprises 2 flows: from source 1 to destination 4, and from source 5 to desti-
nation 9. Using these distributions and Eq. 7, we get U, = 0.526 for the line

topology, and Uy, = 0.477 for the lattice topology.
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For both unicast and broadcast links, if a link that was present
disappears, no packets can be sent over that link. Since we
model a broadcast link as comprising a set of unicast links, we
assume the adversary can tell when any of the individual unicasts;s
links disappears. We also assume, however, that the adversary
does not know the probabilities with which links change state.

6.1.3. Routing Strategy

We use the ¢ randomized multi-hop routing strategy that we
introduced in The adversary knows that a shortest path-s,
based routing strategy is being used but does not know the value
of ¢. If an estimate of ¢ were known to the adversary, this could
be accounted for by changing how B is set. Note that the link
dynamics do not change the shortest paths in the network and
so do not affect B. This is because links are i.i.d and which linksss
will be up or down over time cannot be predicted.

6.1.4. Medium access control

We assume discrete time and that the duration of a timestep
is long enough for every device in the network to transmit one
packet. 530

6.1.5. Traffic generation

We randomly choose F flows with replacement and simulate
the flows for 7' timesteps. We assume no control traffic is gen-
erated. We consider two traffic models: i) uniform traffic and ii)sss
heterogeneous traffic. To generate uniform traffic, we model the
number of data packets that arrive on each flow using a Poisson
process with rate A. In this model, while the traffic generated on

each flow is random, the rate of traffic is the same for all flows.
To generate heterogeneous traffic, we again model the number
of data packets that arrive on each flow using a Poisson process
but now the arrival rate on average for all flows is A, and we
uniformly randomly assign each flow a rate in the range [0, 21].

We assume that the adversary does not know the packet ar-
rival rates, A and A, nor the number of flows present, nor which
subsets of devices comprise sources or destinations of flows. If
such information were known to the adversary, it could be used
to improve how the initial state of the Kalman filter model is
set.

6.1.6. Adversary model.

We assume that the adversary is able to start observing a net-
work when it is “turned on”, so that the adversary sees all initial
traffic on all flows. But we also assume that the adversary does
not necessarily observe when the network is turned off, so that
it is possible that the adversary does not observe some packets
delivered for some flows. Equivalently, we could assume that
the adversary starts observing a network after it has been in op-
eration for some time, but is then able to observe all traffic until
the network is turned off.

When an adversary is not able to observe all packets deliv-
ered for a flow (or is not able to observe the initial forwards of
some packets on a flow), these incompletely delivered packets
will potentially serve as a kind of cover traffic, due to the par-
tially travelled paths that they add to the adversary’s observa-
tions. Similarly, the extra packets sent due to increasing routing
randomness, ¢, can also be considered as cover traffic. In
and which respectively look at the throughput and queue
lengths for the main network scenarios that we consider, we ex-
plore how and when not yet delivered packets can serve as cover
traffic.

6.2. What impacts unlinkability?

Our results are summarized in Figs. [3]to[8] Fig. 3] shows
examples of true and inferred flow distributions and the associ-
ated U, values to provide intuition about how we compute
unlinkability. Figs. f] and [5] show how unlinkability changes
for different network scenarios. Fig. [6] shows the throughput
for the corresponding scenarios in Figs. @ and [5 while Fig.
shows unlinkability as a function of queue length for these and
other scenarios. Finally, while Figs. |3| to [/| focus on network
scenarios with uniform traffic, Fig. [8] shows how unlinkability
changes when traffic is heterogeneous.

6.2.1. Impact of number of flows
Figs. [ and 5] plot unlinkability as a function of algebraic
connectivity, 4. Each simulation is executed for T = 200
timesteps. For each topology, we run 100 simulations, choosing
different sets of F flows randomly with replacement. We show
95% confidence intervals, with the points colored according to
the associated network topology. Different lines indicate differ-
ent settings for the probability that links stay up, p, or down,
q.
In Fig. @ for unicast links, uniform traffic rate 1 = 0.1,
and no link dynamics (i.e., the solid line where p = 1,q = 0),
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Figure 4: Network scenarios with unicast links and uniform traffic rate of 4 = 0.1. Plots show unlinkability, Up,», and anonymization efficiency, E, as a function

of algebraic connectivity, A2, for N = 25.

we see that for a given value of routing randomness ¢, as the
number of flows, F, increases, unlinkability increases. This
is because having more flows provides more opportunities for
flows to cross paths. In Fig. [3 for broadcast links, we see
similar behaviour. 560

It is important to note that, for F = 1, unicast links, and
¢ = 1, that for all topologies except the complete graph, un-
linkability is not 0, even though no explicit attempt is made to
increase traffic mixing. This is due to multi-hop routing: the
adversary must consider that the possible intermediate hops onsss
the path between a potential source and destination might them-
selves be potential sources and destinations. With unicast links,
unlinkability is greater than zero as long as there are shortest
paths in the topology that are more than 1 hop long. In the case
of the complete graph topology, the unlinkability is O because
all shortest paths are only 1 hop long, so there are no potentialszo
intermediate sources and destinations, and so no mixing.

6.2.2. Impact of routing randomness

In Figs. @ and [j] as routing randomness increases (that is,
¢ decreases from 1 to 0), unlinkability generally increases, re-
gardless of the number of flows, link type, or topology. This
is in part because all possible sub-paths along a path must be
considered as potential flows due to multi-hop routing. For in-
stance, with increased routing randomness, it takes longer for
any packet to reach its destination, since the packet must pass
through more intermediate devices that must be considered po-
tential sources and destinations. Regardless of link type, but
depending on the number of flows and network topology, less
routing randomness is needed to achieve the same level of un-
linkability.

6.2.3. Impact of link type
Comparing Figs. [4 and [5] shows that unicast scenarios gen-
erally have lower unlinkability than broadcast scenarios. For
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Figure 5: Network scenarios with broadcast links and uniform traffic rate of 4 = 0.1. Plots show unlinkability, U,», and anonymization efficiency, E, as a function

of algebraic connectivity, A2, for N = 25.

¢ = 0, i.e., maximum routing randomness, there is little differ-
ence in unlinkability between unicast vs. broadcast links.

However, for each link type there is a split based on net-seo
work connectivity. For lower connectivity topologies like the
line and lattice, regardless of whether unicast or broadcast links
are used, high unlinkability is possible only when there are
many randomly chosen flows or routing is via a highly random
walk. For high connectivity topologies like the geometric ran-
dom graph or complete graph, high unlinkability is only pos-ses
sible when either broadcast links are used or routing is via a
highly random walk.

Thus, broadcast transmissions are primarily beneficial when
the topology is well-connected. If the topology is not well-
connected then broadcast is not sufficient by itself: instead,soo
many randomly chosen flows or very random walks are needed.
While other work has shown the power of broadcast transmis-

sions [30]], here we see with multi-hop routing that the benefits
of broadcast are dependent on additional characteristics of the
network scenario.

6.2.4. Impact of network topology

In Fig. EL for unicast links and no link dynamics (i.e.,
p = 1,q = 0), as algebraic connectivity A, increases, unlink-
ability generally decreases except when ¢ = 0. This is because
when connectivity is higher, paths are shorter, and so there
are fewer devices potentially involved in flows, and so there
are fewer possible flows to consider which lowers unlinkabil-
ity. When connectivity is lower, so paths are longer, there are
more devices potentially involved in flows which means there
are more flows to consider which increases unlinkability. Note
that for the geometric random topologies, the mean A, is plot-
ted, since each simulation is for a different randomly generated
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Conversely, in Fig. [5] for broadcast links and no link dynam-
ics, as A, increases, unlinkability increases except when ¢ = Osso
or I = 20. Now, each broadcast increases the number of de-
vices that receive a transmission, thus increasing the number
of possible flows that must be considered. For networks with
higher connectivity, each broadcast reaches more devices, in-
creasing unlinkability. For networks with lower connectivity,sss
even though each broadcast reaches fewer devices, flows must
use longer paths, which means more devices are still reachable
and must be considered in possible flows, thereby increasing
unlinkability.

6.2.5. Impact of link dynamics 670

The dotted and dashed lines in Figs. [dand[5]are for scenarios
when links are dynamically changing.

In Fig. [} using the uniform traffic rate of 1 = 0.1, we see
that unicast link dynamics have minimal impact on unlinkabil-
ity. In other experiments that we have done (see [33] as wellsrs
other results not shown), we have used the much higher uni-
form traffic rates of 4 = 0.5 and 0.75, and observed that as uni-
cast link dynamics increase, the result is somewhat higher un-
linkability compared to when there are no link dynamics, with
somewhat more significant increases when connectivity is low.sso
Essentially, when the network is sufficiently sparsely connected
or there is sufficient network traffic, then unicast link dynamics
may prevent a device from making a transmission, and as a re-
sult, can change the probabilities that packets are destined to
that device or its neighbors. Thus, for unicast links, link dy-sss
namics do increase unlinkability, but only when there is suffi-
cient network congestion, either due to traffic or sparseness of
the network topology.

Conversely, in Fig. [5] broadcast link dynamics result in
smaller decreases in unlinkability (relative to static links) whensso
connectivity is low and larger decreases in unlinkability (rel-
ative to static links) when connectivity is high. Essentially,
when a given device makes repeated broadcast transmissions
over time, if different subsets of the component unicast links to
the device’s neighbors are down due to link dynamics, then thissss
can give information about which neighbor a transmission is in-
tended for. When the network is sparsely connected (and there
is sufficient traffic), the broadcast scenario becomes similar to
the unicast scenario, with link dynamics potentially preventing
a device from making any transmission. 700

6.2.6. Anonymization efficiency

The last columns of Figs. [] and [5] plot anonymization effi-
ciency as a function of algebraic connectivity, A,, for unicast
and broadcast links respectively. We show only the anonymiza-
tion efficiency results for F = 20 since the F' = 1 and F = 57s
results are very similar.

In Fig. 4| for unicast links, anonymization efficiency is high-
est for the lattice and random graph topologies, except when
routing randomness is maximized with ¢ = 0. The lattice, how-
ever, achieves significantly higher unlinkability than do the ran-710
dom graph topologies. We conjecture that in terms of efficiency,
the lattice best trades-off having paths that are not too short so

10

that intermediate hops must be considered as potential sources
and destinations, with having paths that are not too long and
thereby incurring too many transmissions.

In Fig. [5] for broadcast links, anonymization efficiency in-
creases as A increases, except when routing randomness is
maximized with ¢ = 0. Generally, anonymization efficiency
is higher for broadcast links than for unicast links, except when

¢ =0.

6.2.7. Throughput

The partially travelled paths of packets that have not yet been
delivered can potentially be viewed as generating cover traffic
and thereby increasing unlinkability. To understand if and when
this occurs, Fig. [6] shows the percentage of packets delivered
for the different scenarios in Figs. [ and [5] Because unicast
or broadcast link type only affects what the adversary observes,
not which devices store and forward packets, Fig. [f]shows only
the results for the unicast link scenarios, as the broadcast link
results are essentially identical.

Consider first those scenarios in Fig. [6]in which there is no
routing randomness (i.e., ¢ = 1) and all packets are delivered.
In Figs. [6] (a) to (c) this is true for all but the line topology. De-
spite this, we still observe in Figs. [ (a) to (c) and ] (a) to (c)
that unlinkability can be very different for different scenarios.
Hence, even without cover traffic, unlinkability is not necessar-
ily zero and depends on the network topology, traffic flows, and
link type, combined with the use of multi-hop routing.

Now consider those scenarios in Fig. [6] for which there is
some routing random randomness (i.e., ¢ = 0.5) and all pack-
ets are delivered. In Figs. [6] (d) to (f) this is true for all but
the line and lattice topologies. The increase in unlinkability we
observe in Figs. E] (e) to (g) and Figs. E](e) to (g) we can thus at-
tribute purely to the increased routing randomness contributing
“cover.”

Finally, consider those scenarios in Fig. [6|for which there is
maximal random randomness (i.e., ¢ = 0): for this scenario,
due to the increased traffic congestion, not all packets can be
delivered, and the percentage of packets delivered varies signif-
icantly depending on the number of flows, topology, and link
dynamics, all of which impact congestion. The increase in un-
linkability we observe in Figs. [i) to (k) and [5] (i) to (k) for
all of these scenarios we can thus attribute to not just routing
randomness contributing cover but also potentially due to in-
completely observed packet paths.

6.2.8. Queue lengths

A common feature of mix networks [4]] is to wait for a suffi-
cient number of packets to arrive at a device, so that they can be
reordered. A further benefit of this waiting is that it introduces
delays between when a packet arrives at a device and when
it leaves. Here, we explore the possibility that longer queue
lengths (due to more congestion), indirectly increase unlinka-
bility due to the delays that they introduce, as well as provide
more opportunities for mixing due to multi-hop routing.

In Fig. [/] we plot unlinkability as a function of average queue
length. The left column of Fig. [7|shows results for unicast links
while the right column of Fig. [/ shows results for broadcast
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links. To get a better sampling of the space, in each plot we
overlay points for all flow values (F = 1,5, 20), link dynamics
(p = 1,0.75,0.5,0.25 and g = 0,0.5) and uniform traffic rateszs
(1=0.1,0.25,0.5).

First, consider the unicast link scenarios in the left column
of Fig. [7 Except for when routing randomness is maximized
(¢ = 0), we see a clear trend: as queue length increases, unlink-
ability increases. And those topologies that are most affected?+
by congestion, due to their sparse connectivity, the line and the
lattice, show the largest gains in unlinkability as average queue
length increases.

Now, consider the broadcast link scenarios in the right col-
umn of Fig. [7} For the line and lattice points, we again see gen-
erally increasing gains in unlinkability as average queue length7+
increases. For the other three topologies, however, this is not
the case. A more careful examination of these results indi-
cate that the topologies for which unlinkability significantly de-
creases as average queue length increases are those for which
the topology is well-connected and the addition of link dynam-7so
ics (p # 1 and g # 0) thus decreases connectivity and unlinka-

12

bility.

For both unicast and broadcast links in Fig. |2], however, we
observe that even when the queue length is zero, unlinkability
is frequently not zero, and so, like in it is not purely traf-
fic congestion that is increasing unlinkability. We also observe
that most of the gains in unlinkability as a function of queue
size happen with small queue sizes, such as going from empty
queues to queues with one or a few packets in them. Once the
network is too congested, there are likely limited unlinkabil-
ity gains from sending more traffic. Instead, a more promising
approach to increase unlinkability would be to change the char-
acteristics of the traffic flows themselves.

6.2.9. Impact of heterogeneous traffic

So far, our simulations have focused on uniform traffic sce-
narios, in which all flows generate traffic at the same rate 1. We
now consider heterogeneous traffic scenarios, in which flows on
average generate traffic at rate A but individual flows draw rates
from the range [0, 24]. Fig. [8]shows unlinkability as a function
of algebraic connectivity for 1 = 0.1. We do not show results
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for ¢ = 0 as unlinkability is close to one for all scenarios. 805

Figs. a) to (h) focus on unicast links and heterogeneous
traffic. Compared with Figs. [[a) to (h) which uses a uniform
traffic rate of 4 = 0.1 and unicast links, we see that a hetero-
geneous traffic rate of A = 0.1 does increase unlinkability and
anonymization efficiency, except when there is only one flow.s1
When F = 1, we see somewhat noisier results than in Fig. {4} as
would be expected due to the higher variability in the traffic on
any given flow.

Figs. [§]i) to (p) focus on broadcast links and heterogeneous
traffic. Compared with Figs. [5[a) to (h) which uses a uniformes
traffic rate of 4 = 0.1 and broadcast links, we again see that
heterogeneous traffic does increase unlinkability, even when the
average amount of traffic is the same.

While not shown, the percentage of packets delivered for het-
erogeneous traffic is essentially the same as for uniform trafficszo
(shown in Fig. [6). This indicates that it is primarily the distri-
bution of the traffic, rather than some consequence of increased
congestion that is responsible for the increased unlinkability
when traffic is heterogeneous rather than uniform.

825
6.3. Discussion

Our results in confirm that traffic mixing is possible
from multi-hop routing even when devices themselves do not
reorder traffic. Our results also give insight into how best to
control the network structure on which unlinkable communi-gs
cation protocols might run. That is, depending on the network
characteristics, it may not always be necessary to delay and mix
traffic at devices in order to increase unlinkability. We next dis-
cuss these insights in more detail.

6.3.1. How to design unlinkable networks? 83

We can divide the network characteristics we consider into
two groups: i) characteristics of the network topology, such as
connectivity, link type, and link dynamics, and ii) characteris-
tics of the network traffic, such as routing randomness and traf-
fic diversity (which is influenced by the number of flows and®®
the heterogeneity of packet arrival rates on those flows). The
interplay between the network topology and the network traffic
together give rise to the traffic patterns from which unlinkabil-
ity is computed. There is thus some flexibility in choosing how
to maximize unlinkability in any given network depending on®*®
which characteristics we are able to vary.

Network connectivity. Our results show that the lattice most
consistently supports high unlinkability (with U,,,,, never
less than about 0.6) regardless of the other network charac-ss
teristics. This suggests that when it is possible to control
network connectivity, a lattice is a good target topology
when other network conditions are unknown.

Link type. Our results show significant differences between
unicast and broadcast links. Sparsely connected topolo-sss
gies improve unlinkability in unicast scenarios but degrade
unlinkability in broadcast scenarios. This suggests that de-
pending on the link type, controlling the topology to be
more or less sparse may be beneficial.
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Link dynamics.

Our results show small improvements in
unlinkability in sparsely connected topologies for both
unicast and broadcast scenarios, and large decreases in
unlinkability for well-connected topologies for broadcast
scenarios. This suggests that artificial link dynamics could
be beneficial in some limited sparse scenarios if that can be
achieved without introducing too much congestion, while
additional mechanisms to increase unlinkability should be
incorporated in well-connected broadcast scenarios. It
would be worthwhile, however, to explore the impact of
other kinds of link dynamics, particularly those due to de-
vice mobility. For instance, delay tolerant networks have
broadcast links that are mostly down (large ¢ and small p
link dynamics), and frequently use multi-copy protocols
for forwarding packets, and so might be expected to have
good unlinkability.

We would expect that the impact of link quality on unlink-
ability would be similar to what we found for link dynam-
ics. In our simulations, we explored the impact of one par-
ticular kind of link dynamics on unlinkability, by using a
2-state Markov model. For this Markov model, the steady-
state probability that a link is up is given by m (and down
is given by 1 — 7), defined in §6.1.2] For instance, for the
p = 0.75 and g = 0.5 simulations, we have 7 = 0.67, indi-
cating that taking link dynamics into consideration, links
are up 67% of the time and down 33% of the time. Thus,
we can view our 2-state Markov model as also a model
of link quality, where links are up with probability 7 and
down with probability 1 — 7.

Routing randomness. Our results show that routing random-

ization was consistently helpful at increasing unlinkabil-
ity. In practice, for scenarios with low unlinkability, rather
than routing all flows by (mostly) random walks there may
be benefits to a more fine-grained approach. For instance,
when there are few flows, routing can be done by a random
walk. As the number of flows increases, only a subset of
flows need be routed randomly. An alternative approach
would be to add an additional set of cover traffic flows
to the network that are long-lived and routed randomly,
with the number of cover traffic flows changing as some
function of the number of real flows in the network. Ini-
tial experiments (not shown) indicated that the addition of
a random walk flow can increase unlinkability, but only
when the network is not already overwhelmed with traffic:
i.e., there must be sufficient network capacity for random
walk packets to be forwarded in the network, and not just
waiting in queues. This is true more generally: if the net-
work is already overwhelmed with traffic, then increasing
the number of flows will not increase unlinkability.

Traffic diversity. We found that increasing traffic diversity was

helpful at increasing unlinkability, even when the amount
of traffic and number of flows stayed the same and rout-
ing randomness was fixed. This suggests that being able
to quantify the amount of traffic diversity at any given time
may be beneficial, as periods of low traffic diversity could
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be identified, and artificial traffic diversity injected into
the network, such as by delaying packets to artificially
increase traffic burstiness, or by adding additional coveross
flows with more diverse traffic arrivals.

6.3.2. Which network scenarios are most challenging?

We found that the most challenging network topologies were
those at the extremes of connectivity. Lines or very sparsely
connected topologies are challenging because of their suscepti-
bility to traffic congestion, making it hard to increase unlink-
ability significantly without overwhelming the network with
traffic. Possible congestion points in the network topology,
however, allow the possibility of opportunistically reordering
of packets in queues when queue lengths happen to be greater
than zero. Conversely, complete graphs or very well-connectedszs
topologies are challenging, particularly for unicast or dynamic
links, because packets are able to take very short paths to reach
the destination, reducing opportunities for the network to itself
mix and re-order traffic. These short paths, however, mean more
traffic can be accommodated in the network overall, allowings
more cover traffic to be used to increase unlinkability.

We found that the most challenging traffic scenarios were
those with few flows. But as with well-connected topologies,
this also provides an opportunity. When there are few flows,
there is more likely to be available bandwidth to support covers
traffic, such as via routing randomness or artificially injected
traffic diversity. We hypothesize that there is some minimum
amount of total traffic and traffic diversity necessary to achieve
a given amount of unlinkability.

In §6.2] our most challenging network scenarios overall were®®
those that combined challenging topologies with challenging
traffic, such as a unicast fully-connected network with a sin-
gle flow, or a broadcast line network with a single flow. For
both of these scenarios, the small amounts of traffic present in
the network should allow for the use of cover traffic to increase®*
unlinkability. Other potentially challenging scenarios are net-
works that transition between very different topologies or very
different traffic scenarios, as might be found in a mobile net-

work.
950

6.4. Scalability

We chose to model states and observations as multivariate
Gaussian random variables to reduce the number of dimensions.
The Kalman filter implementation we use, FKF [42], was cho-*
sen for its ability to work with large state spaces. The program-
ming language R, however, itself has a maximum vector length
and array dimension limit of 23! — 1. Experimentally, we have
found that the largest networks for which we have been able to
construct a Kalman filter and simulate before hitting this limit
have been for N = 64 devices. For N = 64, the A matrix is
of size 8192 x 8192 and cannot be represented sparsely due tosso
the Kalman filter computations. Since we require 18,000 sim-
ulations to obtain the data to make our plots (from 5 topologies
times 3 values of ¢ times 3 values of F' times 4 sets of p and ¢
values times 100 simulations for statistical significance). Thus,

5
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due to the memory and simulation time required to run simu-
lations with larger N values, even using cloud resources, the
largest N value that we simulate in this work is N = 25.

Our goal, however, is not an algorithm to run in real-time for
large networks, but instead to quantify what impacts unlinkabil-
ity in multi-hop wireless networks which are typically smaller
in size. While we consider small networks, they still give in-
sight, such as how to prevent poor unlinkability subnetworks in
large networks.

7. Conclusions

In this work, we have quantified the unlinkability achievable
when traffic mixing is due to multi-hop routing and broadcast
transmissions, rather than mixing at individual devices. To do
this, we formulated a Kalman filter adversary who passively ob-
serves all packet transmissions that occur in a multi-hop wire-
less network in which devices also act as anonymizing routers.
The adversary uses these transmissions to compute a probabil-
ity distribution over the possible flows present in the network.
From this flow distribution we derived an unlinkability metric
that we analyzed in simulation. We showed that i) for uni-
cast links, as network connectivity increases, unlinkability de-
creases since less traffic mixing is possible, while for broadcast
links as connectivity increases unlinkability increases, ii) link
dynamics tend to increase unlinkability with unicast links but
decrease unlinkability with broadcast links, iii) well-connected
topologies, particularly with broadcast links, are able to achieve
the same level of unlinkability with fewer transmissions per
packet delivered, iv) a lattice topology has consistently good
unlinkability in different network scenarios, and v) heteroge-
neous traffic gives higher unlinkability and better anonymiza-
tion efficiency than uniform traffic, even when the average rate
of traffic is the same.

In future work, we would like to scale our simulations by
either approximating the Kalman filter state space or using ap-
proximate inference methods. The applicability of non-linear
Kalman filters as well as particle filters would also merit in-
vestigation. We would also like to explore the impact of more
realistic physical and link layers as well as mobility models,
which would enable analysis and inference of performance met-
rics like throughput and delay. Finally, we would like to con-
sider adversaries that may only have partial information about
the network topology, as well as active adversaries who are able
to intelligently jam transmissions to decrease unlinkability. Our
long-term goal is to devise unlinkable communication protocols
using our insights.
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