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Abstract

Mobile wireless networks present several challenges for any learning
system, due to uncertain and variable device movement, a decentral-
ized network architecture, and constraints on network resources. In
this work, we use deep reinforcement learning (DRL) to learn a scal-
able and generalizable forwarding strategy for such networks. We make
the following contributions: i) we use hierarchical RL to design DRL
packet agents rather than device agents to capture the packet forward-
ing decisions that are made over time and improve training efficiency;
ii) we use relational features to ensure generalizability of the learned
forwarding strategy to a wide range of network dynamics and enable
offline training; and iii) we incorporate both forwarding goals and net-
work resource considerations into packet decision-making by designing a
weighted reward function. Our results show that the forwarding strategy
used by our DRL packet agent often achieves a similar delay per packet
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2 Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks

delivered as the oracle forwarding strategy and almost always outper-
forms all other strategies (including state-of-the-art strategies) in terms
of delay, even on scenarios on which the DRL agent was not trained.

Keywords: Packet forwarding; Routing; Mobile wireless networks;
Reinforcement learning; Neural networks

1 Introduction

Mobile wireless networks have been used for a wide range of real-world appli-
cations, from vehicular safety [1–3] to animal tracking [4, 5] to environment
monitoring [6, 7] to search-and-rescue [8–10] to military deployments [11, 12]
to the mobile Internet of Things [13]. These networks, however, present several
challenges for learning systems. Devices are moving due to their association
with, for instance, vehicles, robots, animals, or people, which causes changes
in the network connectivity. As a consequence, devices are often only able to
communicate with each other during limited windows of time when devices
are within transmission range of each other. Furthermore, it may be diffi-
cult to predict when opportunities for communication may occur as these
depend on the dynamics of device movement. Depending on the specific net-
work problem to address, there may also be competing goals to trade-off, such
as minimizing packet delivery delay vs. device resource usage. Finally, the net-
work architecture is decentralized, complicating sharing of network state (and
thus training of learning systems) as exchange of information is limited by the
communication opportunities available in the mobile wireless network.

In this work, we focus on the problem of packet forwarding in a mobile
wireless network. Traditionally, forwarding strategies are hand-crafted to tar-
get specific kinds of network connectivity. In static networks, see Fig. 1(a),
once end-end paths are discovered, these paths are generally stable as the net-
work connectivity does not change. In comparison, while end-end paths may
occasionally exist in some mobile networks due to dense connectivity or slow
device movement, see Fig. 1(b), these paths typically only exist for short peri-
ods of time and are periodically re-established using ad hoc routing algorithms
[14–17]. In other mobile networks, devices meet only occasionally due to sparse
connectivity or fast device movement, see Fig. 1(c), and so contemporaneous
end-end paths rarely exist. Consequently, delay tolerant network (DTN) for-
warding algorithms [18–20] are used to select the best next hop for a packet
using criteria such as expected delay to meet the packet’s destination.

In many real mobile wireless networks, however, a mix of connectivity is
often found, see [21], motivating the need for an adaptive forwarding strategy.
Forwarding strategies that do explicitly adapt to disparate network conditions
often focus on switching between two different strategies, such as between
ad hoc routing and flooding [22, 23], or between ad hoc routing and delay
tolerant forwarding [24–27]. Strategy switching, however, risks instability and
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(a) Routing when devices are stationary. Because devices are stationary, once end-end paths are
established they rarely need to be updated due to changes in network connectivity. Here, v has a
contemporaneous end-end path to d, and so packet p is forwarded along the path.

(b) Routing when devices are mobile and the network is well-connected. Despite mobility, the
network connectivity is sufficiently stable that end-end paths can still be established and used
for forwarding traffic, though may need to be periodically re-established. Here again, v has a
contemporaneous end-end path to d, and so packet p is forwarded along the path, though v’s path
to d may be different in the future.

(c) DTN forwarding when devices are mobile and the network is poorly connected. Now con-
temporaneous end-end paths rarely exist. Only temporal paths exist from v to d, so devices
independently choose packet p’s next hop and p is forwarded hop-by-hop to d.

Fig. 1 Comparing packet forwarding in stationary vs. mobile wireless networks (see (a) vs.
(b) vs. (c)). In all scenarios, packet p travels from device v to device u2 to finally arrive at its
destination device d, but whether routing or DTN forwarding is used depends on whether a
contemporaneous path is present.

poor convergence if conditions change quickly or network state is only partially
observable.

To address the above challenges, we use deep reinforcement learning (DRL)
[28] to design an adaptive packet forwarding strategy, using deep neural net-
works (DNNs) [29] to approximate the RL policy. By choosing next hops locally
at devices, both contemporaneous and temporal paths can be implicitly con-
structed by the DRL agent. Importantly, devices located in different parts of a
mobile network can each independently run the same DRL agent as the agent
will react appropriately to the local state at each device by using the parts of
its forwarding policy relevant for that state. Consequently, a single forwarding
policy can be applied to a state space that includes both well-connected and
poorly connected parts of a mobile network.

Most works on DRL-based forwarding in wireless networks focus on sta-
tionary devices; those that do consider device mobility either target specific
kinds of network connectivity or have other limitations (see Section 2). In this
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work, we specifically focus on designing a forwarding strategy for mobile wire-
less networks able to adapt to very different kinds of network connectivity. We
make the following contributions.

i) Packet-centric decision-making to simplify learning (Section 3.2). We use
packet agents, making packets, rather than devices, the decision-making
agent, to accurately assign credit to those actions that affect packet suc-
cess. Because packets can wait for several time steps before making a
decision, we use hierarchical RL [30–32] with fixed policy options [31] to
more efficiently back up from one decision point to another.

ii) Relational features to ensure generalizability despite device mobility
(Section 3.3). We use relational features to represent the states and
actions used by the DRL agent. Relational features model the relation-
ship between network devices instead of describing a specific device, and
so support generalizability to scenarios on which the DRL agent was not
trained. This ability to generalize allows us to train offline thereby avoid-
ing the need for decentralized communication. Relational features also
allow us to structure the DNN representing the DRL forwarding policy to
consider one action at a time, producing a single Q-value per state and
action pair. The number of times the DNN is used to predict Q-values
then corresponds to the number of actions available, allowing the trained
DRL agent to handle varying numbers of neighbors (see Fig. 1) and so be
network independent.

iii) A weighted reward function to trade-off competing goals (Section 3.4). To
incorporate packet forwarding goals and network resource considerations
into packet decision-making, we design a weighted reward function for
the DRL agent. Using our reward function, more weight can be placed
on higher priority forwarding considerations. For instance, in a resource-
constrained network setting, minimizing the number of forwards may be
of a higher priority than minimizing packet delivery delay, and so should
be weighted more by the reward function.

iv) Extensive evaluation (Section 4). We evaluate our approach, which com-
bines the above key design decisions, on two widely-used mobility models
with varying numbers of devices, transmission ranges, and parameter
settings, spanning the continuum from disconnected to well-connected net-
works. Our results show that our DRL agent trained on only one of these
scenarios generalizes well to the other scenarios including those for a dif-
ferent mobility model. Specifically, our DRL agent often achieves delay
similar to an oracle strategy and almost always outperforms all other
strategies in terms of delay, including the state-of-the-art seek-and-focus
strategy [18], even on scenarios on which the DRL agent was not trained.
While the oracle strategy requires global knowledge of future device
movement, our DRL agent uses only locally obtained feature information.

The rest of this paper is organized as follows. In Section 2, we overview
related work on DRL-based forwarding. In Section 3, we describe how we
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formulate a DRL model able to learn an adaptive forwarding strategy. In
Section 4, we present simulation results using our DRL model. Finally, in
Section 5, we summarize our main results and provide directions for future
research.

2 Related Work

In this section, we overview related work on routing and forwarding strategies
for mobile wireless networks. We divide these strategies into two classes: tradi-
tional approaches not based on learning, and RL-based approaches which use
RL to make decisions. We are primarily interested in single-copy forwarding
strategies, as our focus is on strategies that are able to operate in both sparsely
and densely connected networks. In contrast, multi-copy strategies, in which
multiple copies of the same packet may be made to reduce packet delivery
delay, typically consider only sparse network scenarios as the risk of introducing
congestion from making packet copies is lower than in dense networks.

2.1 Traditional Approaches

Traditional approaches to routing and forwarding are generally designed for
specific kinds of network connectivity. For instance, ad hoc routing strategies
like DSR [14], AODV [15], OLSR [16] and DSDV [17] target relatively well-
connected mobile networks (see Fig. 1(b)). In comparison, for delay tolerant
networks [33], aka opportunistic networks, the network topology is typically so
sparse that no contemporaneous path exists between a source and destination
(see Fig. 1(c)), and so epidemic flooding [20] as well as more resource-efficient
strategies like seek-and-focus and utility-based forwarding [18] have been devel-
oped. In our simulation results in Section 4, we compare our approach with
the seek-and-focus and utility-based forwarding strategies of [18] as these are
state-of-the-art single-copy forwarding strategies for delay tolerant networks.
We also compare with an oracle strategy based on epidemic flooding that
performs optimally regardless of network connectivity but is not practicably
implemented.

In many real mobile wireless networks, however, a mix of connectivity is
often found, see [21], motivating the need for an adaptive forwarding strategy.
Forwarding strategies that do explicitly adapt to disparate network conditions
have been less explored and often focus on switching between two different
strategies, such as between ad hoc routing and flooding [22, 23], or between ad
hoc routing and delay tolerant forwarding [24–27]. Strategy switching, how-
ever, can lead to instability and poor convergence if network conditions change
quickly or network state is only partially observable.

A number of works additionally focus on designing multi-copy forwarding
strategies, for instance [19, 34, 35], to improve forwarding when the network
topology is sparse. Multi-copy strategies generate multiple copies of the same
packet to increase the probability that at least one copy of the packet is deliv-
ered within a certain amount of time. While creating packet copies can reduce
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the delivery delay for a given packet, doing so also increases the traffic load on
the network and hence congestion. Consequently, multi-copy strategies typi-
cally focus on sparse network scenarios in which devices only occasionally have
neighbors and there is little traffic, reducing the risk of congestion from packet
copies. Because our focus is on designing forwarding strategies that seamlessly
adapt between sparse and dense network connectivity with possibly significant
amounts of traffic, we focus in this work on designing a single-copy forwarding
strategy (i.e., one that does not make packet copies).

2.2 DRL-Based Approaches

DRL-based approaches to routing and forwarding in mobile and wireless net-
works have the advantage of making it easy to take into consideration different
network features and optimization goals that may be difficult for humans
to reason about. DNNs specifically provide a natural way to unify different
approaches to modeling mobility for forwarding decisions: features that work
well for one kind of mobility can easily be included along with features that
work well for other kinds of mobility. The DNN representation itself sup-
ports generalization to unseen types of device mobility and network scenarios.
Through training, a DRL agent learns the relationship between mobile network
features and how best to forward traffic, with the learned policy represented
using a DNN.

Early works [36–41] focus on distributed routing but use less scalable and
less generalizable table look-up based approaches and typically learn online.
When the network topology is changing, online learning can be problematic as
devices may have few or no neighbors and there may be limited bandwidth to
exchange any information necessary for training. Consequently, many of the
recent works on DRL-based forwarding strategies focus on stationary networks
where devices do not move, see [42–52].

Fewer works consider forwarding in mobile wireless networks, and those
that do often optimize for specific kinds of network connectivity, such as focus-
ing primarily on vehicular networks [53–56] or UAV networks [57–61]. Works
that consider mobile networks more broadly have limitations: [62] extends
early work on strategies that learn online [36, 38] to tactical network environ-
ments but uses RL to estimate the shortest path to the destination and focuses
on multi-copy forwarding, i.e., making additional copies of packets to reduce
delay, unlike the single-copy forwarding strategy we design in this work; [63]
focuses on sparse network scenarios, specifically delay tolerant networks; [64]
focuses on forwarding messages to network communities rather than individual
devices in delay tolerant networks; [65, 66] focus on relatively limited network
scenarios with a few fixed flows and up to 50 devices.

Differences from prior work. The goal of our work is to design an adaptive
DRL-based forwarding strategy that can span the continuum from sparsely
connected to well-connected mobile networks. In Section 4, we show that our
learned forwarding strategy trained on a mobile wireless network with 25
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devices can generalize during testing to mobile networks with 100 devices and
varying transmission ranges. While our work builds off of ideas in [51], we
consider the much harder network setting of mobile devices rather than the
stationary devices considered in [51], and we design novel features to capture
temporal and spatial network connectivity as well as propose a reward function
to reflect competing network goals.

Our use of offline centralized training of the DRL agent (but online dis-
tributed operation) avoids online training’s need for significant information
exchange between devices that may be separated by many hops (e.g., infor-
mation such as whether a packet was delivered or dropped). When deployed
in a network, each device independently uses its own copy of the trained DRL
agent to make distributed routing decisions.

An important takeaway of our work is the need to tailor existing machine
learning techniques to handle the decentralized communication and resource
constraints of mobile wireless networks. For instance, while we have some
features that represent actual relationships between devices as in relational
learning [67–69], we primarily use relational techniques to treat devices as
interchangeable objects described by their attributes rather than their identi-
ties, to build a single model that works across all devices. While our aggregated
neighborhood features are similar in spirit to graph neural networks [70–72],
our features are simpler to compute and can more easily handle changing
neighbors. While we use DRL to learn a policy, we handle actions differently
than in a DQN [73] since the number of actions available at a device changes
over time and varies across devices. Finally, while our weighted reward func-
tion could also be converted to use multi-objective reward techniques [74, 75],
which find policies for a range of reward factor weightings, doing so would
make training the DRL agent more computationally expensive.

3 Learning an Adaptive Forwarding Strategy

In this section, we overview our approach to using DRL to learn an adaptive
forwarding strategy. We first give a brief overview of RL and DRL background
material (Section 3.1). We then describe how we formulate the problem of
forwarding packets as a learning problem (Section 3.2), the relational features
we use to model a mobile wireless network (Section 3.3), and how we construct
the DRL agent’s states and actions from the relational features and derive a
reward function for packet forwarding (Section 3.4). We finish by describing
how our DRL agent makes forwarding decisions (Section 3.5), and how offline
training of the DRL agent is performed (Section 3.6).

3.1 Background

RL focuses on the design of intelligent agents: an RL agent interacts with its
environment to learn a policy, i.e., which actions to take in different environ-
mental states. The environment is modeled using a Markov decision process
(MDP). An MDP comprises a set of states (S), a per state set of actions
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Fig. 2 Overview of how our DRL packet agent makes decisions. Packet p at device v makes
a forwarding decision by activating the DNN at v once for each action a available in p’s
current state s. The DNN inputs are the features fs(·) and fa(·), which describe the state
from p’s point of view and the action under consideration. Packet p chooses the action with
the best estimated Q-value.

(A(s)), a reward function, and a Markovian state transition function in which
the probability of the next state s′ ∈ S depends only on the current state
s ∈ S and action a ∈ A(s). RL assumes that these state transition probabili-
ties are not known, but that samples of transitions of the form (s, a, r, s′) can
be generated. From these samples, the RL algorithm learns a Q-value for each
(s, a) pair. A Q-value estimates the expected future reward for an RL agent,
when starting in state s and taking action a. Once learned, the optimal action
in state s is the one with the highest Q-value.

When the MDP has a small number of states and actions, an RL agent
can learn a Q-value function using Q-learning (see [76]). When the state space
is too large for exact computation of the Q-values, function approximation
can be used to find approximate Q-values. Here, we use DNNs for function
approximation, see Fig. 2, as in Deep RL (DRL). Each state s and action a are
translated into a set of features via the functions fs(·) and fa(·), respectively.
These features are then used as input to the DNN, to produce as output an
approximate Q-function Q̂(fs(·), fa(·)).

3.2 Problem Formulation

In a mobile wireless network (and in networks generally), it is natural to think
of devices as the DRL agents choosing next hops for packets, but doing so
confuses the decision-making dependencies that are involved in forwarding a
packet. That is, the steps from a packet’s source device to its destination device
(or drop) are constructed by the behavior of all devices through which the
packet passes, rather than only by the device at which the packet is currently
located. Thus, we use packet agents, making packets, rather than devices, the
decision-making agent. Doing so allows us to more accurately assign credit to
the actions that affect whether a packet is successfully delivered. With packet
agents, the agent state can track what happens to the packet over time, as it
moves from one device to the next. Thus, the sequence of states that led to the
packet being delivered or dropped is known directly. Devices now only choose
which packets should have the opportunity to make a decision, but do not
choose the next hop for a packet. If we were to instead use device agents, the
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Fig. 3 Example of how our fixed policy options operate over time. Here, we show options
operating concurrently for packets P1 and P2.

agent state would be a function of the packets seen at each device over time,
making knowledge of what happens to packets after they leave the device not
readily available.

Our use of packet agents does, however, give rise to a kind of multi-agent
problem. Even though each packet agent greedily optimizes its own travel time,
packets still indirectly interact with each other via device queues. However, we
do not use a global cooperative reward function to coordinate packet agents.
Instead, we have each device enforce fairness among the packets in its own
queue, choosing which packet gets to choose a next hop. In this work, devices
allow the first k packets to make a decision, where k is generally sufficiently
large that all packets are forwarded. Alternative queuing disciplines include
allowing only the packet at the front of the queue to make a decision or selecting
a subset of packets based on the Q-value for each packet’s best action combined
with a fairness metric quantifying the number of decisions made by packets in
the same flow (i.e., going from the same source to the same destination).

Importantly, much of a packet’s life is spent waiting in a queue. In most
networks, queuing delay is the largest contributor to total packet delivery delay.
A packet must wait in a queue for its turn to make a forwarding decision at a
device. Once a packet chooses a next hop, the packet is transmitted, but then
goes back to waiting in the queue at that next hop. A packet has no actions
it can take while it waits: there are no decisions for the packet to make but
time still passes. This scenario is a natural case for hierarchical RL [30–32],
in which an RL agent organizes its extended-time actions, or options [31] in a
hierarchical time structure, using a semi-MDP rather than an MDP to model
the environment.

We specifically use fixed policy options [31], where for the duration of an
option, there is only a single action available to be selected on each time
step, and it is always the same action. We make a slight modification (see
Section 3.4), so that the first action of the option can vary (corresponding to
the packet’s next hop action selection), and the remaining actions are fixed
with no decisions to be made (corresponding to the packet waiting in the next
hop’s queue). The initial next hop action plus the subsequent time interval
that the packet may need to wait is then treated as a single option. How long
(and whether) a packet must wait dictates how long it takes for the associated
option to complete. If the next hop is the destination, for instance, the packet
will be immediately delivered, with no waiting. Fig. 3 illustrates how such
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options operate over time. Packet P1 triggers an option by choosing to move
from device D1 to device D4. The option continues as P1 waits at D4 for two
time steps, with no action selection possible. Once P1 gets an opportunity to
choose a next hop at D4, the previous option terminates and a new option is
triggered.

Compared to primitive actions, options generally require less data to be
collected and allow smaller state spaces. Consequently, Q-learning proceeds
more quickly. In our setting, if a packet spends τ time steps on average waiting
at a device between decision points, doing backups at one-time step intervals
during that waiting period would increase the size of our training data by a
factor of τ , but without adding any useful information to the training data (as
a packet has no decisions to make when waiting) and so would make learning
slower. With options, reward signals are backed up over multiple time steps in
a single update, which speeds up learning.

3.3 Mobile Network Features

Our goal is to be able to use the same learned forwarding strategy at different
devices and in different mobile networks (e.g., dense or sparse networks with or
without contemporaneous end-to-end paths) with unknown or unseen device
mobility. To achieve this, we use relational features to represent the states and
actions used by the DRL agent. Relational features, such as delay to destina-
tion, model the relationship between network devices instead of describing a
specific device and so are not tied to a specific network topology.

We propose five classes of relational features specifically tailored to model
mobile wireless networks. These classes give a general framework for organizing
the features needed for forwarding packets in a mobile network. The features
we propose for each class, however, are not exhaustive but rather only the
specific features used by the DRL agents whose performance we evaluate in
Section 4; we expect many other features could be proposed for each class. We
next describe the features we use, from the point of view of a packet p when
choosing its next hop. We assume that p’s destination is device d and that p
is currently located at device v which has neighbors u ∈ Nbr(v).

1. Packet features, fpacket(p), are a function of information about packet p.
We propose the following packet features.

(i) Packet p’s time-to-live (TTL). TTL is a packet header field used in
real networks to prevent the possibility of packets looping forever in
the network. When a packet is generated at its source device, the
packet’s TTL field is set to some initial value. Then, the TTL field
is decremented by one whenever a packet is forwarded to another
device. A packet is dropped when its TTL reaches 0.

(ii) Packet p’s time-at-device. That is, how long p has been at its current
device, v.
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2. Device features, fdevice(v, d), are a function of device v’s information
and destination device d’s ID. We propose the following device features
computed at the current time step t.

(i) Device v’s queue length. Even when a network has little congestion,
queue length information can still be useful when choosing next
hops. For instance, next hop devices that do not have any packets
(or any packets in the same traffic flow as p) may be preferred to
better distribute traffic and decrease delivery delay.

(ii) Device v’s per-destination queue length considering only packets
for destination d. This captures the possibly differing amounts of
congestion along paths to different destinations.

(iii) Device v’s node degree. This corresponds to the number of neigh-
bors of device v, that is, the number of devices within wireless
transmission range of v.

(iv) Device v’s node density. This is computed as the fraction of
neighbors that v has out of the N devices in the network.

Our DRL agent additionally keeps track of two device features, the x and
y location coordinates of device v, which are not input into the DNN but
are only used to compute the Euclidean distance, a path feature described
later in this section. Even when a device knows its own location, loca-
tions for other devices can only be obtained when two devices meet and
exchange features. Consequently, location (and thus distance) features
may be out-of-date.

3. Path features, fpath(v, d), describe the time-varying path from a device
v to a destination device d. Unlike the other features discussed so far,
path features can use not just current device information but also histor-
ical information. Consequently, these features may have some associated
uncertainty. We propose the following path features.

(i) Last inter-meeting time. This measures the amount of time that has
elapsed since device v last met destination d.

(ii) Last meeting duration. This measures the duration of the last
meeting between device v and destination d.

(iii) Euclidean distance. This measures the distance from device v to
destination d. Euclidean distance is calculated using v’s current x
and y location coordinates, and device v’s recorded (and possibly
out-of-date) location coordinates of destination d (see description of
device features).

(iv) Timer transitivity. This is computed between device v and destina-
tion d, using the calculation proposed in [18] for utility-based and
seek-and-focus forwarding and described next. Each device v main-
tains a timer for each other device d in the network, denoted as
τv(d), which is the time elapsed since device v last met device d.
We implemented the timer transitivity as defined in [18]: when two
devices, u and v encounter each other, if τu(d) < τv(d) − t(du,v),
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where t(du,v) is the expected time for a device to move a distance
of du,v (the distance between devices u and v), then τv(d) is set to
τv(d) = τu(d) + t(du,v). When device locations are not known, the
distance du,v can be approximated using the transmission range:
device v can only be so far away from device u for v to be within the
transmission range of u. Timer transitivity captures the insight that,
for many mobility models, a smaller timer value on average implies a
smaller distance to a device, where the timer evaluates the “utility”
of the device in delivering a packet to another device. In experi-
ments we have done, we have observed correlation between timer
values and distance. Consequently, timer transitivity can be used as
a feature to approximate distance when location coordinates, and
correspondingly the Euclidean distance feature, are not available.

4. Neighborhood features, fnbrhood(v, d), are computed over the current
neighbors Nbr(v) of a device v. We propose the following neighborhood
features: for each device and path feature, fi ∈ fdevice(v, d) ∪ fpath(v, d),
we compute the minimum, maximum, and average over device v’s cur-
rent neighborhood, Nbr(v). This is similar in spirit to the aggregation
function in a graph neural network [70–72]. These features compress the
information obtained from a variable number of neighbors into a fixed
size vector to input to the DNN in Fig. 2.

5. Context features, fcontext(p, u), provide context for other features. For a
packet p at a device v considering a next hop u ∈ Nbr(v)∪ v, we propose
context features that indicate whether p has recently visited u or not.
Each packet p stores in its packet header the last Nhistory device IDs that
it visited, where Nhistory is a predetermined constant. Let H(p, i) be the
ID of the device that packet p visited i hops ago, for 0 ≤ i < Nhistory.
When i = 0, then H(p, 0) is the device at which p is currently located. To
make the context features relational, rather than use device IDs, we use
a sequence of Boolean features, bi, defined as:

bi =

{
1, if u = H(p, i),

0, otherwise.
(1)

The use of packet history reduces unnecessary packet transmissions. For
instance, even if a possible next hop device u has promising features for
reaching the destination, if packet p recently visited u, then u may be a
less good next hop than it seems based solely on u’s other feature values.

Basic features. We designate a subset of the above features as basic features
(marked in Table 1), which we use in all but one of the trained DRL agents that
we evaluate (see Table 5). Specifically, we designate packet TTL, queue length,
per-destination queue length, node degree, and node density as basic features.
We derive our basic features from information used by traditional routing
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and forwarding algorithms. The queue length feature measures the amount of
congestion in the network. The per-destination queue length feature measures
the amount of congestion on the path to a particular destination and comes
from the backpressure forwarding algorithm (see [77]), which forwards a packet
p to the next hop that has the largest difference in queue length relative to
p’s current device when considering only packets with the same destination as
p. Backpressure is throughput optimal (i.e., maximizes the number of packets
able to be delivered) when the network topology is relatively fixed and there
is sufficient traffic such that queues have a chance to build up. The packet
TTL feature is used in traditional routing and forwarding algorithms to avoid
routing loops: if a packet has been forwarded more than a set number of
times (typically related to the diameter of the network), it is assumed that
the packet is undeliverable and the packet is dropped. The node degree and
node density features help with generalizing the learned forwarding strategy to
networks with different numbers of devices, varying transmission ranges, and
heterogeneous mobility.

Additional features. We designate the remaining features of time-at-device,
Euclidean distance, timer transitivity, last inter-meeting time, and last meeting
duration as additional features, whose utility we evaluate through an ablation
study in Section 4.4.1. We label Euclidean distance as an additional feature
since the x and y location coordinates may not always be available. In such
situations, the timer transitivity and other timing related features (i.e., packet
time-at-device, last inter-meeting time, and last meeting duration) could be
used instead.

Feature estimation. All features are estimated using local exchange of infor-
mation between neighboring devices. A device discovers its neighbors when
another device enters or leaves its transmission range through the use of “heart-
beat” control messages. Suppose there is a packet p with destination d at device
v, and suppose v has neighbors u ∈ Nbr(v). Device v obtains the following
information from each neighbor u: i) the features fdevice(u, d)∪ fpath(u, d), ii)
u’s current x and y location coordinates, timestamped with u’s current clock,
and iii) the x and y location coordinates for every other device w, which u
has either recorded directly from w or received indirectly from another device,
along with the recording’s timestamp, i.e., the time on w’s clock of when the
coordinates were recorded. Device v then uses ii) and iii) to update its record-
ing of the x and y location coordinates for every other device, overwriting
older recordings with more recent recordings for a device w, comparing the
timestamps associated with the recordings. Because these timestamp compar-
isons always compare timestamps received from the same device w, no clock
synchronization is needed.

Feature normalization. Our goal when normalizing features is to re-scale them
into the range of approximately 0 to 1. Mobility makes normalization chal-
lenging as the ranges of the raw feature values, such as for node degree, may
be very different in different mobile networks. To address this, we make the
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Table 1 For each feature fi, normalization is done using (fi + 1)/(D + 1), where 1 is
added to fi to avoid zero values for features and the value D is given in the table.
Neighborhood features are not normalized as they are a function of other normalized
features; context features also are not normalized as they are Boolean valued. We also
distinguish the basic features used by all but one of the DRL agents whose performance we
evaluate in our simulations from the additional features, see Table 5.

Class Feature D Type

Packet Packet TTL 300 Basic
Packet Packet time-at-device 200 Additional
Device Queue length 20 Basic
Device Per-destination queue length 20 Basic
Device Node degree 10 Basic
Device Node density N Basic
Device x-coordinate location 500m Additional
Device y-coordinate location 500m Additional
Path Euclidean distance 2 Additional
Path Timer transitivity 800 Additional
Path Last inter-meeting time 800 Additional
Path Last meeting duration 100 Additional

normalization a function of network properties when possible, such as the
(approximate) number of devices in the network or the (approximate) size of
the area in which devices are moving or the maximum expected inter-meeting
time between pairs of devices. In this way, the normalization can better adapt
to new network environments. Table 1 summarizes how we normalize features
in our simulations.

During training vs. testing vs. real network deployment it can be useful to
scale some features slightly differently. For instance, during training, a packet’s
time-to-live (TTL) should be sufficiently long to still allow packets to be deliv-
ered to the destination despite some random exploration, but also be short
enough to allow packet drops due to expired TTLs. However, during testing, a
large TTL should be used to eliminate packets drops due to expired TTLs, so
as to prevent skewing of the results as the delays incurred by dropped pack-
ets cannot be usefully counted. Consequently, to obtain our testing results, we
use a larger initial TTL than during training (see Table 3), but we re-scale a
packet’s raw TTL before normalizing to ensure that as long as the raw TTL
is within the TTL range used in training then the TTL feature will have the
same value as during training, and one otherwise. Conversely, in a real net-
work deployment, a small TTL would be used to prevent undeliverable packets
from looping too long in the network.

3.4 MDP Formulation

Let Nbr(v) be the current neighbors of device v. Each individual packet agent
p currently located at device v can choose between moving to one of v’s neigh-
bors or staying at device v. Packet p’s actions therefore correspond to the set
Nbr(v) ∪ {v}. We next define the states, actions, and reward function for our
packet-centric DRL agent from p’s point of view.
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• States. The state features that packet p uses to make a decision are a function
of features derived from packet p, p’s destination d, and p’s current device
v: fs(v, p, d) = fpacket(p) ∪ fdevice(v, d) ∪ fpath(v, d) ∪ fnbrhood(v, d).

• Actions. The action features for each action u in packet p’s action set
Nbr(v) ∪ {v} are defined by fa(u, p, d) = fdevice(u, d) ∪ fpath(u, d) ∪
fcontext(p, u). This action description reuses many of the same features as
in the state description, but is defined in terms of a device u ∈ Nbr(v)∪{v}
rather than just packet p’s current location at device v, and additionally
includes the context features.

Reward function. Forwarding strategies for mobile wireless networks must
trade-off competing goals for packet delivery, such as minimizing delivery
delay while also minimizing resource usage like energy and link bandwidth.
As a packet travels to its destination, it must also assign credit or blame
to the devices it passes through, depending on the success or failure of the
packet to reach its destination. To incorporate these forwarding goals and net-
work resource considerations into packet decision-making, we design a weighted
reward function. Using our reward function, more weight can be placed on
higher priority forwarding considerations, such as to not waste resources by
making unnecessary packet transmissions.

We define separate rewards for the action of a packet choosing to stay at
its current device, rstay, vs. moving to a neighboring device that is not the
destination, rtransmit, as packet transmission requires expending energy. The
ratio of rstay to rtransmit determines the trade-off that the forwarding strategy
learns between minimizing packet delivery delay vs. number of transmissions.
For instance, by setting rstay = rtransmit, the DRL agent would minimize
delay, but ignore the number of transmissions made. For mobile networks,
where forwarding loops and unnecessarily long paths can easily arise, explicitly
penalizing transmissions is important for learning a more efficient forwarding
strategy. We define two other rewards, for actions that lead to a packet being
delivered to its destination, rdelivery, or dropped, rdrop = rtransmit/(1 − γ),
where γ ∈ [0, 1] is the RL discount factor. The drop reward is equivalent to
receiving a reward of rtransmit for infinite time steps. Our reward settings are
given in Table 3.

Actions vs. options. The sample estimate of expected return for an option that
starts at time step ti and ends at time step tj is (see [31]):

y =

tj−1∑
k=ti

γk−ti · rk +

[
γ(tj−ti) · max

a′∈A(stj )
Q(stj , a

′)

]

where rk is the reward at time step k as defined above, and stj is the state
encountered at time tj , with A(stj ) its actions. We use this y as the output
target for the neural network.
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Options for packets begin and end at transmission, i.e., when a packet
leaves a device. Options can consist of a packet being i) delivered, ii) dropped,
or iii) transmitted and then staying for some number of time steps. There are
two types of options in this domain: terminal (packet delivery or drop) and
non-terminal (transitions from one device to another and then staying at the
new device). On packet delivery or drop, the option takes only a single time
step and the next state stj is the terminal state. The sample of return for
delivery is y = rdelivery, and similarly for the drop option, y = rdrop.

Because transmit and then stay options have rewards that are constant for
every time step over the life of the option after the first time step, all rk = rstay
in the option except at the first time step ti, where ri = rtransmit. Therefore,
on transitions where the packet does a transmission action and then stays for
several time steps, the sample of return is:

y = rtransmit +Rstay(tj − (ti + 1)) + γ(tj−ti) · max
a′∈A(stj )

Q(stj , a
′).

where Rstay(tj − (ti + 1)) is the return from the stay actions taken over the
course of the option, from time ti + 1 to time tj , and is defined by

Rstay(tj − (ti + 1)) = rstay ·
1− γ(tj−(ti+1))

1− γ
.

Because reward is constant for all but the first time step, only the beginning
and end of an option need be stored during training. Every packet that remains
in a device queue at the end of a training round has an unfinished option.
We remove such options from the training data. As more data accumulates,
including the end of the option, the newly finished options are used. From this
point on, to be consistent with Sections 3.3 and 3.4, we use “actions” rather
than “options” to refer to extended-time actions.

3.5 Decision-Making

The DNN architecture we use to approximate the Q-value function for the
DRL agent is shown in Fig. 2. Our DNN has four layers: input, expansion,
compression, and output. Let F = |fs(·)| + |fa(·)| be the number of input
features and thus the size of the input layer. The expansion layer has 10F
neurons and the compression layer has F/2 neurons. Our DNN settings are
summarized in Table 2. Note that we are not currently using regularization
or dropout during training, but plan to explore their use in future work. The
DNN outputs a Q-value for each state, action pair, represented by the feature
vectors fs(·) and fa(·). Each device has a copy of the same trained DNN
that encodes the forwarding strategy, which allows decision-making to be done
independently at each device.

Fig. 2 also overviews how our DRL packet agent uses the trained DNN to
make a forwarding decision. To obtain the features fs(·) and fa(·) to input
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Table 2 DNN settings used in our simulations.

Setting Value

# of Input features F = |fs(·)|+ |fa(·)|
Size of expansion layer 10F
Size of compression layer F/2
Size of output layer 1
Learning rate 0.0001
Activation function (all layers) ReLU
Optimizer (all layers) Adam
Loss Mean squared error
Batch size 32
# of Epochs 10
Training validation split 0.2

into the DNN in Fig. 2, the DRL agent computes the following features for
packet p with destination d currently at device v: fpacket(p), fdevice(v, d), and
fpath(v, d) using local information at device v; fnbrhood(v, d), fdevice(u, d), and
fpath(u, d) using the features received by v from u ∈ Nbr(v); and finally,
fcontext(p, u) using only u’s ID in addition to the information carried in packet
p’s header fields. The number of times the DNN is used to predict Q-values
corresponds to the number of actions available to the packet. Using the DNN
to separately make predictions for each action, rather than making predictions
for all actions at once, allows the DRL agent to handle varying numbers of
actions, and, correspondingly, varying numbers of neighbors (and therefore
varying topologies). During training, ϵ-greedy action selection is used, with ϵ
set as in Table 3.

3.6 Offline Training

In a mobile wireless networks, devices can only exchange information (such
as whether a particular packet reached its destination or was dropped) using
distributed communication. Consequently, it is typically not feasible to gather
the information needed for training online due to limited network band-
width. Instead, we use offline training, leveraging a network simulator to both
generate the training data and train the DNN model.

During the training phase, we alternate between periods of collecting data,
using the current DNN model to make routing decisions, with periods of train-
ing a new DNN model, using all of the data collected so far. This alternation
allows the trained DNN to improve over time. Initially, the DNN parameters
are random, and so the routing data collected from our network simulator
is generated by a random forwarding strategy. But as the DNN parameters
improve from training, so too does the forwarding strategy, and correspond-
ingly, so does the training data. The periods of data collection are termed
rounds and we set each round to be Tround = 1000 time steps long, see Table
3. In our training simulations in Section 4 we collect Ttrain = 90, 000 time
steps of data, i.e., 90 rounds of training data.
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Table 3 Simulation parameters.

Symbol Meaning Value

Ntrain # of devices during training 25
Ntest # of devices during testing 25, 64, 100
Xtrain Transmission range for training 50m
Xtest Transmission range for testing 20m to 80m
- RL max iterations 100
ϵtrain RL exploration rate for training 0.1
ϵtest RL exploration rate for testing 0
γ RL discount factor 0.99
TTLtrain TTL field initialization during training 300
TTLtest TTL field initialization during testing 3000
B Maximum queue size 200
rdelivery RL delivery reward 0
rstay RL stay reward -1
rtransmit RL transmit reward -1, -2, -10
rdrop RL drop reward rtransmit/(1− γ)
Nhistory Length of device visit history 0, 5
Ttrain # of time steps for training 90,000
Ttest # of time steps for testing 100,000
Tmodel # of training time steps used by testing model 60,000
Tcooldown # of time steps at simulation end with no traffic 10,000
Tround # of time steps per round 1000

The training data collected using our network simulator includes the follow-
ing information, recorded for every packet decision made: i) the state features,
ii) the action features for each action considered for the state, iii) the action
that was selected, and iv) the reward that was received. We append this infor-
mation to the end of a single data file shared by all devices during training.
From this data file, we construct the state, action, reward, next state tuples,
(s, a, r, s′), that are needed for training the DNN approximating the DRL
forwarding strategy. Specifically, we use the currently trained DNN and the
(s, a, r, s′) tuples to obtain the target Q-values associated with the tuples. Then
a new DNN is trained with this data.

Because our relational features are device and network independent, we
are able to train a single DRL agent via experience replay, taking trajectory
samples from the data file. Samples are only taken for packets that have been
dropped or delivered (and hence the full trajectory is contained in the data
file) to allow the computation of each option return which is a function of the
time it takes for a packet to reach a terminal state.

Once training has been completed, no more updating of the DNN model
occurs. Consequently, the forwarding strategy that is used during testing does
not change. In Section 4, for testing, we use the trained model produced after
Tmodel = 60, 000 time steps, see Table 3, as this has converged for both delivery
delay and number of forwards. The trained model that has been chosen is
then copied to each device and used independently at each device by packets
to choose next hops.
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4 Simulation Results

In this section, we overview our simulation setup and describe our simulation
results. Our goal is to evaluate the performance and generalization capabilities
of our formulation of DRL-based forwarding in mobile wireless networks. We
first describe how we simulate a mobile wireless network (Section 4.1). Then,
we describe the different forwarding strategies against whose performance we
compare (Section 4.2). Next, we overview DRL training performance (Section
4.3). Finally, we overview DRL testing performance as well as the performance
of the other forwarding strategies (Section 4.4).

4.1 Methodology

Our simulations are done using a custom discrete-time packet-level network
simulator that we have implemented in Python3. The DRL agents are trained
and all strategies are tested using this simulator. We use Keras v.2.5.0 [78] and
Tensorflow v.2.11 [79] to implement the DNN. Table 3 gives our simulation
parameters.

4.1.1 Device Mobility

We use two widely-used mobility models in our simulations: the steady-
state random waypoint (RWP) mobility model [80–82] and the original
Gauss-Markov (GM) mobility model [83, 84].

RWP mobility. In the RWP mobility model, a device picks a random location
and speed, and travels to the chosen location at the chosen speed. Subse-
quently, the device pauses for a random duration, and repeats the above
process until the end of the simulation. In our simulations, our RWP sce-
nario uses the following parameter settings. We set the average speed at which
devices move to be 3 m/s with a speed delta of 2 m/s with no pause time.
This means that each device moves to the chosen location at a speed chosen
uniformly at random from the range [3− 2, 3+ 2], i.e., [1, 5]. Figure 4(a) gives
example device movement for this RWP scenario.

GM mobility. In the GM mobility model, a device is assigned an initial velocity
with which to move, which is then updated at fixed intervals, i.e., at time
t = δ, 2δ, ..., (n−1)δ, nδ, ..., where δ is the update interval, indicating how long
a device moves at a given velocity before updating. In the implementation of
the GM mobility model that we use, the velocity of a device during the n-th
interval [(n− 1)δ, nδ], denoted as (vxn, v

y
n), is calculated as follows [83, 85]:

vxn = αvxn−1 + (1− α)µ cos(θn−1) + σ
√

1− α2wx
n−1

vyn = αvyn−1 + (1− α)µ sin(θn−1) + σ
√

1− α2wy
n−1

where 0 ≤ α ≤ 1 is a memory level parameter that controls how much a
device’s velocity in the n-th interval (vxn, v

y
n) depends on its velocity in the



Springer Nature 2021 LATEX template

20 Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks

0 100 200 300 400 500
X-location (m)

0

100

200

300

400

500

Y-
lo

ca
tio

n 
(m

)

(a) RWP mobility

0 100 200 300 400 500
X-location (m)

0

100

200

300

400

500

Y-
lo

ca
tio

n 
(m

)

(b) GM mobility

0 100 200 300 400 500
X-location (m)

0

100

200

300

400

500

Y-
lo

ca
tio

n 
(m

)

(c) GM-curly mobility

Fig. 4 Example device movements over time for the RWP, GM, and GM-curly mobility
scenarios. For clarity, only the movements for two devices (device 2 in blue with dashed lines
and device 18 in red with solid lines) are shown. We show the first 100 BonnMotion waypoints
for these two devices, where dots represent the waypoints, the triangle symbol indicates the
starting waypoint of a device, and the star symbol indicates the ending waypoint of a device.

previous interval (vxn−1, v
y
n−1), u is the asymptotic mean of the speed, σ is

the asymptotic standard deviation of the velocity (where the asymptotic stan-
dard deviations of the x and y components of the velocity are set to be the
same value, σ), θn−1 is uniformly randomly distributed in [0, 2π), and wx

n−1

and wy
n−1 are uncorrelated random variables from a Gaussian distribution

with zero mean and unit standard deviation. Smaller values of α result in
more randomness of device movement over time, with α = 0 giving rise to
the memory-less Random Walk model. Larger values of α result in stronger
memory, with α = 1 giving rise to mobility with a constant velocity. The GM
mobility model gives rise to a slightly different spatial distribution of devices
in the network, compared with the RWP mobility model. Specifically, in the
RWP mobility model, devices are more concentrated near the center of the
simulation region [80]; whereas in the GM mobility model, devices are evenly
distributed in the simulation region.

In our simulations, we consider two scenarios for the GM mobility model,
termed GM and GM-curly respectively. For the GM scenario, we set δ = 30s,
µ = 3.0 m/s, σ = 0.1 m/s, and α = 0.6, which gives the relatively straight-
lined movement shown in Fig. 4(b). For GM-curly scenario, we set δ = 2s,
µ = 1.0 m/s, σ = 10 m/s, and α = 0.3, which gives the “curlier” movement
shown in Fig. 4(c). Note that the GM-curly model is only used for testing: no
DRL agents are trained on this model.

Mobility trace generation. In our simulations, we use BonnMotion [85] to gen-
erate mobility traces for devices moving under the above models. Specifically,
for all models, BonnMotion generates a mobility trace as a sequence of way-
points for each device. For example, suppose that device v’s mobility trace
is (tv0, x

v
0, y

v
0), (t

v
1, x

v
1, y

v
1), . . . , (t

v
n, x

v
n, y

v
n), where tv0, t

v
1, . . . , t

v
n are the points in

time when device v changes its velocity, and (xv
i , y

v
i ) are device v’s locations

at time tvi . During the interval [tvi , t
v
i+1], device v moves from location (xv

i , y
v
i )



Springer Nature 2021 LATEX template

Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks 21

to location (xv
i+1, y

v
i+1) at a constant speed. Since the time points at which the

waypoint changes are decided by the mobility model, they do not necessarily
coincide with the per-second time steps in our simulation. We therefore calcu-
late the locations of each device v at each time step t by first finding the time
interval [tvk, t

v
k+1] in which t lies in, and then calculating the location at time

t via a linear interpolation of v’s locations at tvk and tvk+1.
In our simulations, as listed in Table 3, all training scenarios use Ntrain =

25 devices moving in a 500m × 500m area and a transmission range of
Xtrain = 50m. For testing, we consider N = 25, 64, and 100 devices moving
in a 500m × 500m area and vary the transmission range Xtest from 20m to
80m to obtain both poorly connected and well connected mobile scenarios. We
generate separate mobility traces for the training and testing scenarios.

Connectivity of mobile scenarios. For the RWP scenario, Fig. 5(a) plots the
average node degree, the probability that a path exists, the average inter-
meeting time, and the average meeting duration for various numbers of devices
N and transmission ranges. The last two metrics are computed online between
each possible pair of devices, and so are independent of the number of devices.
As expected, the network connectivity increases as the number of devices,
N , and transmission range increase, leading to higher average node degree,
higher probability of having a path between a pair of devices, shorter inter-
meeting time, and longer meeting duration. The corresponding quantities for
the GM and GM-curly scenarios are shown in Fig. 5(b) and (c). We observe
lower average node degree and lower probability of a path in the GM and
GM-curly scenarios compared to the RWP scenario. This is consistent with
the observation that for the same number of devices and transmission range,
devices are more concentrated near the center of the simulation region under
the RWP model than under the GM model [80]. We also observe that the
GM-curly scenario has more frequent meetings between devices (shorter inter-
meeting times) but also shorter meeting durations than does the GM scenario.

4.1.2 Network Traffic

We vary the amount of traffic over time by modeling flow arrivals, packet
arrivals, and flow durations. To generate traffic, we model flow arrivals using
a Poisson distribution with parameter λF = .001N/25, scaling the number
of flows (and thus the amount of congestion) as a function of the number
of devices N in the network. We model flow durations using an exponential
distribution with parameter λD = 5000 and packet arrivals on flows using a
Poisson distribution with parameter λP = 0.01. A simulation run starts with
λFλD initial flows. Each device has a queue with a maximum size of B = 200
packets, beyond which additional packets are dropped.

Because flow arrivals are a function of the number of devices in the net-
work, not just network connectivity but also traffic congestion are varied in
the different network scenarios used for testing. Thus, when evaluating gen-
eralization of a DRL agent trained on one scenario to other scenarios, we are
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(a) RWP scenario

(b) GM scenario

(c) GM-curly scenario

Fig. 5 The connectivity properties of the various network scenarios considered in our
simulations.

evaluating not just generalization due to different connectivity and numbers
of devices but also due to different amounts of traffic.

For the packet TTL field, we use different initialization values in training vs.
testing. During training, a packet’s TTL field is initialized to TTLtrain = 300.
We use this value since if TTLtrain is too small, the DRL agent may not be
able to deliver any packets due to the initial random forwarding, while if it
is too large, the DRL agent may not be able to experience dropped packets
caused by expired TTLs. During testing, a packet’s TTL field is initialized to
a much larger value, TTLtest = 3000. This is because the statistics we com-
pute about delay and number of forwards are only for delivered packets: any
dropped packets due to expired TTLs would skew these statistics. The dif-
ferent TTLtrain and TTLtest values, however, do necessitate the re-scaling
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described in the last paragraph of Section 3.3. When deploying in a real net-
work, however, it is likely desirable to use smaller TTL values than what we
use, to ensure that undeliverable packets are dropped in a timely manner.

At each time step, every device in the network is given an opportunity to
transmit up to k = 200 packets in its queue. Given our network settings, this
k is sufficient for a device to transmit all of its packets, avoiding the need for
device decision-making. But if the number of packets in a device’s queue were
larger than k, the best k packets could be forwarded where best is a function
of the Q-value for each packet’s best action combined with a fairness measure
to ensure each packet regularly gets a transmission opportunity.

4.2 Forwarding Strategies

In our simulations, we compare the performance of five forwarding strategies,
including a delay minimizing strategy (oracle) and a transmission minimizing
strategy (direct transmission) to give bounds on the performance of the DRL
agent. We also compare with the utility and seek-and-focus strategies from [18]
as state-of-the-art strategies that trade-off delay with number of transmissions.
Our goal is to understand which forwarding strategies have low packet delivery
delay while also making a good trade-off in terms of resources used due to
packet transmissions.

1. Oracle forwarding uses complete information about current and future
network connectivity to calculate the minimal hop path that achieves the
minimal delivery delay for each packet. To find these forwarding paths, we
make use of epidemic routing [20]. Epidemic routing creates many copies
for a packet and distributes them to the network. For those packet copies
that reach the destination with the minimum latency, we further find
the packet copy that reached the destination with the minimum number
of hops. Although the oracle forwarding strategy minimizes delay while
maintaining a good trade-off in terms of network resources, it is not prac-
tical to implement in real networks since it requires knowing the current
and future network topology.

2. Direct transmission forwarding only forwards a packet one hop, directly
from the source to the destination. This is optimal when the goal is to
minimize the number of transmissions per packet.

3. Utility-based forwarding [18] maintains a timer at each device v for each
device d in the network, denoted as τv(d), which is the time elapsed since
device v last met device d. We implemented the timer transitivity as
defined in [18]: when two devices, u and v encounter each other, if τu(d) <
τv(d) − t(du,v), where t(du,v) is the expected time for a device to move
a distance of du,v (the distance between devices u and v), then τv(d)
is set to τv(d) = τu(d) + t(du,v). A device v chooses the next hop for
a packet as follows: v first determines which neighboring device, u, has
the smallest timer to the packet’s destination, d. If τv(d) > τu(d) + Uth,
i.e., the timer of v to destination d is larger than the timer of u to d by
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Table 4 Parameter settings for utility-based and seek-and-focus forwarding
strategies.

Symbol Meaning Utility Seek&Focus

Uth Utility threshold 10 100
Uf Focus threshold - 20
prob Random forwarding probability - 0.5
time until decoupling Time before sending packet back to device - 10
Tfocus Max duration to stay in focus phase - 10
Tseek Max duration to stay in re-seek phase - 50

more than the utility threshold, Uth, the packet is forwarded to device u;
otherwise, the packet is not forwarded. We optimize Uth for Ntrain = 25
and Xtrain = 50m, which are the same settings on which the DRL agent
used in testing was trained; the value of Uth that we use is shown in Table
4.

4. Seek-and-focus forwarding [18] combines the utility-based strategy (focus
phase) with random forwarding (seek phase). If the smallest timer (among
all neighboring devices) to the destination is larger than the focus thresh-
old Uf , the packet is in seek phase, forwarded to random neighbor with
probability prob. Otherwise, the packet is in the focus phase, and the
carrier of the packet performs utility-based forwarding with utility thresh-
old Uth. In addition to Uf , prob, and Uth, seek-and-focus has three more
parameters: the time until decoupling which controls the amount of time
a device is not allowed to forward a packet back to a device it received
the packet from, Tfocus which controls the maximum duration to stay
in focus phase before going to re-seek phase (random forwarding of the
packet to get out of a local minimum), and Tseek which controls the max-
imum duration to stay in re-seek phase until going to seek phase (random
forwarding of the packet until reaching a device with timer smaller than
Uf ). We optimize these parameters for Ntrain = 25 and Xtrain = 50m,
which are the same settings on which the DRL agent used in testing was
trained; the parameter values we use are shown in Table 4.

5. DRL forwarding uses a DRL agent to make forwarding decisions. We con-
sider a number of different DRL agents trained on different scenarios,
shown in Table 5. Specifically, we prefix these agents by the mobility sce-
nario used in training, i.e., “RWP” or “GM”, followed by the features
used: e.g., basic features only (marked as “basic”), or basic and additional
features (marked as “dist” for those that use Euclidean distance as an
additional feature, or marked as “timer” for those that use the timer tran-
sitivity feature as an additional feature, or “timer+” for those that use
the timer transitivity feature and other timing features, or “timer−” for
those that use the timer transitivity feature but not all of the basic fea-
tures). By default, we use Nhistory = 5 for context history; a scenario that
does not use the context history feature is marked as “nohist”. Finally, a
scenario that does not use the default value of rtransmit = −2 appends a
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Table 5 DRL training scenarios. All training scenarios use Ntrain = 25 devices and a
transmission range of Xtrain = 50m. Scenarios are prefixed by the type of the mobility
scenario used in training, either RWP or GM. All but the RWP-timer− strategy use all of
the basic features specified in Table 1. The additional features used beyond the basic
features are also listed for each scenario. We use Ttrain = 60, 000 training time steps for
the trained DRL model based on looking at the training plots in Fig. 6.

Scenario Nhistory rtransmit Features

RWP-basic 5 -2 Basic

RWP-timer− 5 -2 Timer, Queue Len., Per-Destination Queue Len, TTL
RWP-timer 5 -2 Basic, Timer

RWP-timer+ 5 -2 Basic, Timer, Intermeeting, Duration, Time-at-device
RWP-dist 5 -2 Basic, Euclidean distance
RWP-dist-1 5 -1 Basic, Euclidean distance
RWP-dist-10 5 -10 Basic, Euclidean distance
RWP-dist-nohist 0 -2 Basic, Euclidean distance
RWP-dist-1-nohist 0 -1 Basic, Euclidean distance
RWP-dist-10-nohist 0 -10 Basic, Euclidean distance
GM-dist 5 -2 Basic, Euclidean distance
GM-dist-1 5 -1 Basic, Euclidean distance
GM-dist-10 5 -10 Basic, Euclidean distance

“−1” or “−10” to “dist”, representing the other two rtransmit values of
−1 and −10 that we explore. During training, the DRL agent is essen-
tially learning about different kinds of network connectivity over time, as
well as different amounts of congestion over time (and the resulting vari-
ability in queue length). In Fig. 6, we show DRL training performance,
discussed further in the next section.

In our current implementation of the timer transitivity calculation, which
is used by the utility-based and seek-and-focus forwarding strategies as well
as by the DRL agent when using the timer feature, we assume the distance
du,v between two neighboring devices u and v is known. In practice, we can
use the transmission range as an over-estimate of du,v. This is because timer
transitivity is calculated only when the two devices are within transmission
range of each other, i.e., their distance from each other is no more than the
transmission range. We expect that using the transmission range as an approx-
imation of the distance, du,v, will have only a negligible impact on the timer
value. The timer transitivity calculation itself is only a rough estimate since
the true relationship between delay and distance in a given network depends
on the actual movement of devices.

4.3 Training Performance

Fig. 6 overviews DRL training performance. Each training simulation is run
for Ttrain time steps, where each time step corresponds to one second. At each
time step, the cumulative performance over all packets delivered up to that
time step is shown. The performance metrics we use are the packet delivery
rate, delay per packet delivered, and number of forwards per packet delivered.

The top row of Fig. 6 shows DRL training performance on the RWP
scenario, for three DRL agents, using the default amount of history (i.e.,
Nhistory = 5). In addition, one of the DRL agents uses the default transmission
reward of rtransmit = −2, while the other two DRL agents use rtransmit = −1
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(a) RWP, packet delivery (b) RWP, delay (c) RWP, # of forwards

(d) GM, packet delivery (e) GM, delay (f) GM, # of forwards

Fig. 6 DRL agent training performance. All training runs are done with Ntrain = 25 and
Xtrain=50m.

and −10, as marked in the legend. The bottom row of Fig. 6 shows shows DRL
training performance on the GM scenario for the same feature and reward set-
tings. Fig. 6 shows convergence of the learned DRL strategies, with rtransmit

controlling the learned trade-offs between delay and number of forwards. For
a given reward setting, the DRL agents trained on the GM scenario have a
higher delay per packet delivered and a higher number of forwards per packet
delivered than do the DRL agents trained on the RWP scenario, which is
consistent with the observation that GM mobility leads to lower connectivity
than does RWP mobility for the same setting (see Fig. 5). We explore this
resource-delay trade-off in our testing results in the next section.

For clarity, Fig. 6 only presents the training performance for a subset of the
DRL agents shown in Table 5. The training performance for the DRL agents
not shown is similar to those in Fig. 6 and we observed convergence for all of
the DRL agents that we use.

4.4 Testing Performance

The focus of our testing simulations is to evaluate the performance and general-
ization capabilities of our proposed DRL approach. All performance measures
are computed over the delivered packets, such as the delay or number of for-
wards per packet delivered. All performance metrics are averaged across all
simulation runs for a given set of parameters, except for the maximum queue
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(a) Ntest = 25, Xtest = 50m (b) Ntest = 64, Xtest = 50m (c) Ntest = 100, Xtest = 50m

Fig. 7 Resource usage vs. latency on the RWP scenario. Each point is the average of 50
simulation runs. All DRL agents were trained with Ntrain = 25 devices and Xtrain = 50m
and all packets were delivered and no packets were dropped. Labels indicate the forwarding
strategy.

length which is the average of the maximums seen in each simulation run for
a given set of parameters.

4.4.1 Impact of Parameter and Feature Choice

In this section, we investigate how the choice of training transmission reward,
rtransmit, affects testing performance. We also perform feature ablation to
understand how different features impact performance.

Impact of transmission reward. Fig. 7 plots the trade-off between the delay
(i.e., latency) and the number of packet transmissions (i.e., resource usage)
for various forwarding strategies. For the DRL strategies, we consider multiple
strategies that differ in their choice of rtransmit and whether the context history
feature is being used. For comparison, we also show the trade-offs made by the
transmission minimizing direct transmission strategy (“Direct Tx”), the delay
minimizing oracle strategy, and the state-of-the-art utility-based and seek-
and-focus strategies. In the following, we consider the impact of the choice of
rtransmit on the delay vs. resource usage trade-off; the impact of the history
feature is deferred to later. The performance comparison of the DRL strategies
with the other strategies is discussed in detail in Section 4.4.2.

Recall that the reward for staying at a device, rstay, is fixed to −1. When
rtransmit = −1, there is no penalty for transmission as a packet receives the
same reward for transmitting as for staying at a node (i.e., rtransmit = rstay).
Correspondingly, we see that for the DRL strategies using this reward setting,
RWP-dist-1 and RWP-dist-1-nohist, delay per packet delivered is the lowest
among the various DRL strategies, but the number of forwards per packet is the
highest. Conversely, for rtransmit = −10, corresponding to RWP-dist-10 and
RWP-dist-10-nohist, there is a significant penalty for making a transmission,
and so, while the delay per packet delivered is the highest for these DRL
agents, the number of forwards per packet is now the lowest. Henceforth, the
DRL agents used are trained with rtransmit = −2 as this setting provides a
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(a) Ntest = 25, packet delivery (b) Ntest = 25, delay (c) Ntest = 25, # of forwards

(d) Ntest = 25 (e) Ntest = 25 (f) Ntest = 25, # of drops

Fig. 8 Testing performance for the RWP scenario, varying the features used by the DRL
agents and the transmission range Xtest from 30m to 80m. Each point is the average of
50 simulation runs; 95% confidence intervals are shown. All DRL agents were trained with
Ntrain = 25 devices and Xtrain = 50m but with varying features, see Table 5. For the RWP-
basic, RWP-timer−, RWP-timer, and RWP-timer+ strategies, not all packets were able to
be delivered by the end of each simulation.

good trade-off between delay and number of transmissions. In future work, it
would be interesting to evaluate how varying the other rewards, rstay, rdrop,
and rdelivery, impacts forwarding performance.

Impact of context history features. As shown in Fig. 7(a), context history can
also serve as a deterrent to unnecessary packet transmissions: the DRL agents
that do not use context history (i.e., RWP-dist-nohist, RWP-dist-1-nohist, and
RWP-dist-10-nohist) have a higher number of forwards, compared to the the
DRL agents with Nhistory = 5 (i.e., RWP-dist, RWP-dist-1, and RWP-dist-
10), for the same setting of rtransmit. This gap is most pronounced when there
is no transmission reward penalty (i.e., when rtransmit = −1) and the network
is sparse (i.e., for Ntest = 25). While rtransmit penalizes packet transmissions,
the context history features themselves do not directly penalize transmissions.
Instead, the context history features augment the state space to add con-
text when actions are taken and ensure that actions that lead to unnecessary
looping can be more easily identified.
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Impact of distance and timer features. Fig. 8 looks at the impact of different
features on performance. The RWP-basic strategy uses the fewest features,
i.e., only the basic features listed in Table 5. Fig. 8(b) shows that the RWP-
basic strategy has larger average delay per packet delivered than any of the
other strategies. The RWP-timer strategy uses the timer transitivity feature
in addition to the features used by the RWP-basic strategy. Fig. 8 shows that
adding the timer transitivity feature significantly reduces the delay compared
to the RWP-basic strategy, but with increased forwards per packet delivered,
and, more problematically, with significant numbers of packets dropped due to
queues being full when the network topology is sparse (i.e., when Xtest < 60m
in Fig. 8(f)).

The RWP-timer+ strategy uses the time-at-device, last inter-meeting time,
and last meeting duration features in addition to the timer transitivity and
other features used by the RWP-timer strategy. Fig. 8 shows that these addi-
tional features give the RWP-timer+ strategy a delay similar to that of the
RWP-timer strategy but with fewer forwards per packet and fewer packet
drops. In results not shown, we observe that for the RWP-timer+ strategy,
using the learned DRL model after 46,000 training time steps rather than
60,000 training results in no packet drops and stable queue lengths, though
slightly larger delay but also significantly fewer forwards per packet delivered.
Consequently, there may be some overfitting with the RWP-timer+ strategy
due to the 60,000 time steps of training.

We also observe in Fig. 8 that the RWP-timer− strategy, which only
includes a subset of the basic features, and in particular excludes the node
degree and node density features, performs significantly worse than the other
strategies including the RWP-basic strategy in terms of packet drops and max-
imum queue length, indicating the utility of the node degree and node density
features for generalization.

Fig. 8 shows that the RWP-dist strategy achieves the best performance for
all of the performance metrics among all of the DRL strategies. Comparing the
performance of the RWP-timer+ strategy with that of the RWP-dist strategy
indicates that the timer transitivity feature can potentially be used as an
approximation to the Euclidean distance feature. In the rest of our testing
results in the next sections, we focus on the DRL agents that use the Euclidean
distance feature in addition to the basic features.

4.4.2 Results for the RWP Scenario

In this section, we investigate how well the learned DRL forwarding strategies
generalize during testing for the RWP scenario.

Overall results. In Fig. 9, we plot the the testing performance of two DRL
agents, RWP-dist and RWP-dist-nohist, on the RWP scenario. The DRL
agents were trained on the corresponding RWP scenarios described in Table 5,
which use Ntrain = 25 devices and a transmission range of Xtrain = 50m. The
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(a) Ntest = 25 (b) Ntest = 64 (c) Ntest = 100

(d) Ntest = 25 (e) Ntest = 64 (f) Ntest = 100

(g) Ntest = 25 (h) Ntest = 64 (i) Ntest = 100

(j) Ntest = 25 (k) Ntest = 64 (l) Ntest = 100

Fig. 9 Testing performance on the RWP scenario, varying the number of devices Ntest

from 25 to 100 and the transmission range Xtest from 20m to 80m. Each point is the average
of 50 simulation runs; 95% confidence intervals are shown. The legend shows DRL training
conditions: both DRL agents were trained with Ntrain = 25 devices and Xtrain = 50m. All
packets were delivered in these simulations and no packets were dropped.
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testing scenarios shown in Fig. 9 include 25, 64 or 100 devices (the largest net-
work size we investigated) with transmission ranges varying from 20m to 80m,
leading to various connectivity levels (see Fig. 5). Most of the testing scenarios
differ from the training scenario in terms of the number of devices and/or the
transmission range, as well as the number of traffic flows. We see in Fig. 9 that
our DRL agents are able to generalize well from their training scenarios to the
various testing scenarios, including those on which they were not trained. We
also observe that our DRL agents often achieve packet delivery delays similar
to the oracle strategy, and outperform all other strategies in terms of delay.

All forwarding strategies must make some kind of trade-off between packet
delivery delay and number of packet transmissions. While the DRL agents
use a reward function to navigate this trade-off, seek-and-focus uses a less
straightforward approach. Among the six parameters of seek-and-focus, we
observed that varying the forwarding probability prob while fixing the other
five parameters, see Table 4, provides one way to manage this trade-off. But
there is no clear way to set these parameters in coordination with prob to
achieve a specific trade-off for a given network scenario. One solution would
be to instead learn the optimal settings for the seek-and-focus parameters.

Impact of network connectivity. Fig. 9 shows that as the network topology
becomes more well connected (i.e., due to an increasing number of devicesNtest

or increasing transmission range Xtest), the DRL agents start to have delay
per packet delivered similar to that of the oracle strategy, with not too many
more forwards per packet delivered. As the network topology becomes more
sparse (i.e., due to decreasing Ntest or decreasing transmission range Xtest),
Fig. 9 shows that the DRL agents start to have delay that is approaching the
delay of the non-oracle strategies. The DRL agents have their highest delay
per packet delivered for the N = 25 and Xtest = 20m scenario which is the
most disconnected testing scenario we consider (see Fig. 5). Due to the rela-
tively few neighbors and long inter-meeting times between pairs of devices for
this scenario, we hypothesize that using additional features, such as tempo-
ral neighborhood features, would improve DRL agent performance, as would
considering predicted future neighbors when choosing next hop actions. We
revisit these ideas again when we discuss the impact of network sparsity on
forwarding performance more generally later in this section. Importantly, the
DRL agents, trained on networks with Ntrain = 25 devices, are able to gen-
eralize their learned forwarding strategies to networks with different numbers
of devices (Ntest = 64 and Ntest = 100), as well as to the varying numbers of
actions available to packets in these networks.

Impact of network traffic. The number of flows (and therefore amount of traf-
fic) increases as a function of the number of devices Ntest in the network
(see Section 4.1.2). Network congestion, however, increases as the transmission
range Xtest decreases (due to correspondingly decreased network connectiv-
ity). Fig. 9 shows that the DRL strategies are able to generalize to network
congestion levels different from those on which they were trained.
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Impact of context history features. As we discussed earlier in Fig. 7, we found
that the use of context history decreases the number of forwards per packet
delivered. While the results we showed in Fig. 7 are for a fixed transmission
range of Xtest = 50m and varying numbers of devices Ntest, Fig. 9 validates
this for other transmission ranges (for Xtest from 20m to 80m) as well as
varying numbers of devices. Specifically, Fig. 9 shows that the DRL agent with
no context history (i.e., RWP-dist-nohist) has a consistently higher number
of forwards per packet delivered than the DRL agent with context history
(i.e., RWP-dist) regardless of transmission range and despite having a similar
delay per packet. This is an indication that the use of context history improves
generalization of the learned forwarding strategy.

Handling network sparsity. As shown in Fig. 9, as the network becomes sparser
(i.e., Xtest decreases), the length of the oracle (i.e., optimal) path decreases.
This is because in such scenarios, forwarding a packet to a neighbor is less
likely to reduce packet delivery delay as that neighbor is unlikely to meet other
devices, including the destination. In contrast, for the DRL strategy, as the
network becomes sparser, path lengths increase, and delays deteriorate to be
close to those of the non-oracle strategies. Compared to the DRL strategy, the
more desirable behavior of the oracle strategy is a consequence of its ability
to sample all possible paths to a destination in parallel via packet copies,
enabling it to differentiate between dense and sparse networks and thereby
make appropriate forwarding decisions. We hypothesize that adding additional
features to the DRL agent that are able to detect sparsity more globally in
the network would improve DRL forwarding behavior. Additionally, if the
amount of network traffic is fixed, then as the network becomes sparser, traffic
congestion and hence queue lengths increase. Therefore, training on network
scenarios with more variable traffic to induce more queue length variation may
also improve DRL forwarding behavior.

Queue stability. The stability of device queue lengths can be used to determine
whether a network’s capacity can support a given traffic load and whether the
forwarding strategy is appropriately managing this traffic. Figs. 9 (j) to (l)
show the maximum queue length seen in any of the simulation runs for a given
setting. Though queue lengths increase as network connectivity decreases, we
see that queue lengths are stable for all strategies, meaning that the forwarding
strategy and network are able to support the traffic load. The direct transmis-
sion and utility-based strategies have noticeably larger queue lengths compared
to the other strategies, with this gap increasing as the number of devices in
the network increases.

While not shown, average queue lengths are small for all strategies, gener-
ally smaller than five packets. Note that the oracle strategy is implemented as
a multi-copy scheme with a recovery latency of zero, i.e., when the first packet
copy is delivered to the destination with minimum number of hops, all other
copies are removed from the network. Consequently, the queue lengths for the
oracle strategy include all packet copies present but only until the first copy is
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(a) Ntest = 25 (b) Ntest = 64 (c) Ntest = 100

(d) Ntest = 25 (e) Ntest = 64 (f) Ntest = 100

(g) Ntest = 25 (h) Ntest = 64 (i) Ntest = 100

(j) Ntest = 25 (k) Ntest = 64 (l) Ntest = 100

Fig. 10 Testing performance using GM mobility, varying the number of devices Ntest from
25 to 100 and the transmission range Xtest from 20m to 80m. Each point is the average
of 50 simulation runs; 95% confidence intervals are shown. The legend shows DRL training
conditions: the DRL agent was trained with Ntrain = 25 devices and Xtrain = 50m. All
packets were delivered in these simulations and no packets were dropped.
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delivered. Consequently, oracle queue lengths are not directly comparable to
the queue lengths of other strategies.

4.4.3 Results for GM Mobility

In this section, we investigate how well the learned DRL forwarding strate-
gies generalizes during testing for the GM scenario. As shown in Fig. 5, GM
mobility gives rise to a significantly sparser network topology than does RWP
mobility.

Overall results. In Fig. 10, we plot the the testing performance of one DRL
agent, GM-dist, trained on the GM scenario. Like with our RWP results, most
of the testing scenarios differ from the training scenario in terms of the number
of devices and/or the transmission range, as well as the number of traffic
flows. Fig. 10 shows that our DRL agent is able to generalize well from the
training scenario to the various testing scenarios. The DRL agent often achieves
packet delivery delays similar to the oracle strategy, and outperforms all other
strategies in terms of delay except for the very sparsest network scenarios.

Impact of network connectivity. Like the RWP results in Fig. 9, the GM results
in Fig. 10 show that as the network topology becomes more well connected,
the DRL agent starts to have delay per packet delivered similar to that of the
oracle strategy, with not too many more forwards per packet delivered. GM
delay per packet delivered, however, is significantly higher than what is seen
for the RWP results, due to the decreased connectivity of the GM mobility
model.

Impact of network traffic. Again, like the RWP results in Fig. 9, the GM results
in Fig. 10 show that the DRL strategies are able to generalize to different
traffic and congestion levels, despite the sparser connectivity of GM mobility.

Queue stability. While the queue lengths for the RWP results shown in Fig. 9
are relatively stable, the GM results in Figs. 10 (j) to (l) show higher queue
lengths and, in particular, noisier queue lengths for the direct transmission
strategy. Average queue lengths, again not shown, are still generally less than
5 packets.

4.4.4 Cross-mobility Model Generalization

In this section, we investigate how well the learned DRL forwarding strategies
trained on one mobility scenario generalize to other mobility scenarios.

Training on GM and testing on RWP. In Fig. 11, we compare the testing per-
formance of two DRL agents, GM-dist and RWP-dist, on the RWP scenario.
While the RWP-dist strategy was trained on the RWP scenario, the GM-dist
strategy was trained on the GM scenario. Our goal here is to confirm that our
DRL-based approach to forwarding is able to generalize not just to different
levels of connectivity and congestion for a given mobility model but also to dif-
ferent mobility models. Indeed, we observe in Fig. 11 that the GM-dist strategy
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(a) Ntest = 25 (b) Ntest = 25 (c) Ntest = 25 (d) Ntest = 25

(e) Ntest = 64 (f) Ntest = 64 (g) Ntest = 64 (h) Ntest = 64

Fig. 11 Cross-mobility testing performance: we evaluate GM-dist performance, a DRL
strategy trained on the GM scenario, on the RWP scenario. For comparison, the results
when using the RWP-dist strategy, i.e., a DRL strategy trained on the RWP scenario (which
matches the scenario that is used in testing) are also shown. Each point is the average of
50 simulation runs; 95% confidence intervals are shown. All packets were delivered in these
simulations and no packets were dropped.

performs quite similarly to the RWP-dist strategy in terms of delay per packet
delivered, with only slightly higher numbers of forwards. Interestingly, we also
observe that the GM-dist strategy leads to slightly smaller maximum queue
lengths compared to that of the RWP-dist strategy, potentially due to the GM-
dist strategy training on the slightly sparser (and therefore more congested)
GM mobility scenario.

Training on GM or RWP and testing on GM-curly. In Fig. 12, we compare
the testing performance of two DRL agents, GM-dist and RWP-dist, on the
GM-curly scenario. Fig. 12 shows that both DRL agents are able to generalize
to this new scenario, despite not having been trained on it. Interestingly, the
RWP-dist strategy performs better than the GM-dist strategy does on the GM-
curly scenario: i.e., RWP-dist has lower delay and fewer forwards than does
GM-dist. This may be a consequence of the higher randomness of movement
found in the RWP training scenario compared to the GM training scenario
(see Fig. 1), making it more similar to the GM-curly scenario despite being a
different mobility model.
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(a) Ntest = 25 (b) Ntest = 25 (c) Ntest = 25 (d) Ntest = 25

(e) Ntest = 64 (f) Ntest = 64 (g) Ntest = 64 (h) Ntest = 64

Fig. 12 Cross-mobility testing performance: we apply GM-dist, a DRL strategy trained
on the GM scenario to testing on the GM-curly scenario Each point is the average of 50
simulation runs; 95% confidence intervals are shown. All packets were delivered in these
simulations and no packets were dropped.

5 Conclusions and Future Work

In this work, we have shown that it is possible to use DRL to learn a scalable
and generalizable forwarding strategy for mobile wireless networks. We lever-
age three key ideas: i) packet agents, ii) relational features, and iii) a weighted
reward function. Our results show that our DRL agent generalizes well to sce-
narios on which it was not trained, often achieving delay similar to the oracle
strategy and almost always outperforming all other strategies in terms of delay
including the state-of-the-art seek-and-focus strategy [18]. The key ideas of
our approach are generally applicable to other decision-making tasks in mobile
wireless networks.

There are a number of research directions we would like to explore in
future work. We expect that as the kinds of mobility that the DRL agent
sees become more diverse, more features will also be needed to characterize
the key differences in mobility and enable the DRL agent to generalize to a
wide variety of mobile networks. Ultimately, we would like to evaluate how
well our approach performs in real test-bed scenarios. Additionally, targeted
sampling of the feature space during training would be helpful to ensure that
a diversity of network connectivity and congestion is seen. In this work, we
trade-off two conflicting goals by using different weights for the transmission
and stay rewards. As future work, we will explore another approach to handle
competing goals based on constrained RL (e.g., as in [86, 87]), where one
goal is set as the objective function, and the other goal is set as a constraint.
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We would also like to refine our reward function to incorporate additional
network considerations such as fairness. Finally, we would like to explore device
decision-making to complement our packet agents. For instances, devices could
learn which subsets of packets should get to make a forwarding decision when
a transmission opportunity arises.
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