Relational Deep Reinforcement Learning for Routing in Wireless Networks

Victoria Manfredi, Alicia Wolfe, Bing Wang, Xiaolan Zhang

WoWMoM

June 9, 2021

- 1. Motivation
- 2. Our DeepRL approach
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

1. Motivation

- 2. Our DeepRL approach
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

Multi-hop wireless network

Devices

 operate as both end-hosts and routers (forward traffic)

Why multi-hop?

ease of deployment (no infrastructure needed), privacy

Problem: routing is hard

- changing network conditions:
 traffic, connectivity,
 interference, mobility
- competing routing goals:
 throughput, delay, power

Solution: learn how to route using deep reinforcement learning

What is deep reinforcement learning?

RL agent learns to choose actions to maximize expected future reward

Simple update rule

$$Q(s_{t+1}, a_{t+1}) \leftarrow Q(s_t, a_t) + \alpha \left[r + \gamma \max_{a_t} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$
 Move estimate closer to target

What is deep reinforcement learning?

RL agent learns to choose actions to maximize expected future reward

Use deep neural network to approximate mapping from (state s_t , action a_t) to Q-value

What is deep reinforcement learning?

RL agent learns to choose actions to maximize expected future reward

Our goal: define RL agent for routing. Requires us to define states, actions, and rewards useful for routing

1. Motivation

- 2. Our DeepRL approach
 - Who chooses actions? I.e., who should be a DeepRL agent?
 - How to define generalizable states and actions?
 - Can we make training more efficient?
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

Who chooses actions?

Problem: normally a device chooses a packet's next hop. But a device's state doesn't track what happens with a forwarded packet

Device agent

Device v chooses next hop for outgoing packet

Packet agent

Packet 1 chooses next hop at each device

Packet 2 chooses next hop at each device

Solution: use packet agents. Simplifies **experience sequence of** s, a, s', r, and **easily defines reward** for packet drops, deliveries, forwards, queueing

1. Motivation

2. Our DeepRL approach

- Who chooses actions? I.e., who should be a DeepRL agent?
- How to define generalizable states and actions?
- Can we make training more efficient?
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

How to define generalizable states and actions?

Problem: network connectivity varies, but # of inputs to DNN are fixed

How packet p at device v chooses next hop

- For each (state, action)
 pair, inputs features into
 DNN to get Q-value
- p chooses action that gives highest Q-value

Goal 1: be able to use the same DNN for topologies with different connectivity

Goal 2: handle varying # of next hop actions despite DNNs having fixed # of inputs

Relational features support generalizability

Relational features are independent of network topology and traffic

- Relational: distance to destination, queue length, ...
- Not relational: device ID, packet destination ID, traffic matrix, ...

Relational state features

For packet p at device v with 1-hop neighbor set Nbr(v)

State features $f_s(s)$

Packet features $f_{pkt}(p, v, t)$

• p's TTL, p's location in v's queue

Local device features $f_{device}(v, p, t)$

- distance from *v* to *p*'s dest.
- *v*'s queue length
- *v*'s queue length for only packets to *p*'s dest.
- v's node degree

Aggregated neighbor features, $f_{nbr}(Nbr(v), p, t)$

- summarize varying # of neighbors
- min, mean, max of $f_{device}(Nbr(v), p, t)$

Relational action features

Packet p separately considers each possible action u

State features $f_s(s)$

Let $u \in Nbr(v) \cup v$. Then action u's features are given by the **local device features** $f_{device}(u, p, t)$

- distance from *u* to *p*'s dest.
- *u*'s queue length
- u's queue length for only packets to p's dest.
- *u*'s node degree

1. Motivation

2. Our DeepRL approach

- Who chooses actions? I.e., who should be a DeepRL agent?
- How to define generalizable states and actions?
- Can we make training more efficient?
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

Can we make training more efficient?

Problem: training requires lots of computation and data

Solution: offline centralized training, online distributed testing **Benefits:**

- 1. Avoids expending bandwidth or computation on online training
- 2. Allows data from all DeepRL agents to be used in training, with each DeepRL agent independently using same model during testing

Problem: how to efficiently model **multi-timestep actions**, such as when a packet arrives in a queue and must wait until it can be forwarded

Solution: use extended-time actions, aka options (MDP becomes semi-MDP) **Benefits:**

- 1. Faster learning with less data needed
- 2. Actions logically match packet behavior

1. Motivation

2. Our DeepRL approach

3. Evaluation

4. Related Work

5. Wrap-up

Goals:

- Identify scenarios for which our DeepRL approach performs well, and
- Test how well a DeepRL agent trained on one scenario is able to generalize its learned routing policy to unseen scenarios

Training and **testing** scenarios:

- 1. Static lattice + low traffic
- 2. Static random + high traffic
- 3. Static lattice + high traffic
- 4. Dynamic lattice + high traffic
- 5. Delay tolerant lattice + high traffic
- 6. Delay tolerant random + high traffic

Geometric Random

Goals:

- Identify scenarios for which our DeepRL approach performs well, and
- Test how well a DeepRL agent trained on one scenario is able to generalize its learned routing policy to unseen scenarios

Training and **testing** scenarios:

- 1. Static lattice + low traffic
- 2. Static random + high traffic
- 3. Static lattice + high traffic
- 4. Dynamic lattice + high traffic: p = .8, q = .2
- 5. Delay tolerant lattice + high traffic: p = .5, q = .4
- 6. Delay tolerant random + high traffic: p = .5, q = .4

Goals:

- · Identify scenarios for which our DeepRL approach performs well, and
- Test how well a DeepRL agent trained on one scenario is able to generalize its learned routing policy to unseen scenarios

Training and **testing** scenarios:

- 1. Static lattice + low traffic
- 2. Static random + high traffic
- 3. Static lattice + high traffic
- 4. Dynamic lattice + high traffic: p = .8, q = .2
- 5. Delay tolerant lattice + high traffic: p = .5, q = .4
- 6. Delay tolerant random + high traffic: p = .5, q = .4

Training:

N = 64

Testing:

N = 9, 16, 25, 36, 49, 64, 81, 100

Goals:

- · Identify scenarios for which our DeepRL approach performs well, and
- Test how well a DeepRL agent trained on one scenario is able to generalize its learned routing policy to unseen scenarios

Training and **testing** scenarios:

- 1. Static lattice + low traffic
- 2. Static random + high traffic
- 3. Static lattice + high traffic
- 4. Dynamic lattice + high traffic: p = .8, q = .2
- 5. Delay tolerant lattice + high traffic: p = .5, q = .4
- 6. Delay tolerant random + high traffic: p = .5, q = .4

Training:

N = 64

Testing:

N = 9, 16, 25, 36, 49, 64, 81, 100

Low traffic:
$$\lambda_F = .002N/25$$
, $\lambda_P = .05$, $\lambda_D = 5000$
High traffic: $\lambda_F = .002N/25$, $\lambda_P = .2$, $\lambda_D = 5000$
Flow arrivals (Poisson) (Exponential) (Poisson)

Goals:

- · Identify scenarios for which our DeepRL approach performs well, and
- Test how well a DeepRL agent trained on one scenario is able to generalize its learned routing policy to unseen scenarios

Training and **testing** scenarios:

- 1. Static lattice + low traffic
- 2. Static random + high traffic
- 3. Static lattice + high traffic
- 4. Dynamic lattice + high traffic: p = .8, q = .2
- 5. Delay tolerant lattice + high traffic: p = .5, q = .4
- 6. Delay tolerant random + high traffic: p = .5, q = .4

Training:

N = 64

Testing:

N = 9, 16, 25, 36, 49, 64, 81, 100

Routing strategies

Shortest Path (SP) vs. Back Pressure (BP) vs. DeepRL agent (DRL)

Testing performance on lattice

Testing on *static lattice* + *high traffic*

DeepRL strategies

- Generalize to other values of N and traffic levels
- Outperform SP and BP, have lowest delay per packet (not shown)

Testing performance with link dynamics

Testing on <u>dynamic</u> lattice + high traffic

Testing on *delay tol. lattice* + *high traffic*

DeepRL strategies

- ullet Generalize to other values of N and link dynamics, have lowest per-packet delay (not shown)
- Outperform SP and BP except when high congestion in disconnected network

BP strategy

Has advantage due to ability to select any packet in queue, along with use of longer queues

Testing performance on random

Takeaways

- Possible to train offline and generalize to very different unseen scenarios
- Flexibility in choosing which packet to forward is important as network becomes disconnected/congested
- Ideally: train DeepRL agent on set of different scenarios

- 1. Motivation
- 2. Our DeepRL approach
- 3. Evaluation

4. Related Work

5. Wrap-up

Classifying RL routing approaches

	RL agent learns online	RL agent learns offline
Distributed	 Early work (table-based): [1][2] Recent work has scalability limits, such as using network specific DNN inputs, focus on smaller networks and less congested scenarios: e.g., [3], [4] 	 Recent work has scalability limits, such as using network specific DNN inputs, focus on smaller networks and less congested scenarios: e.g., [5] [6] Our work: Our use of relational features allows scalability and generalization so that we are able to train an agent offline
Centralized (Unscalable for wireless)	Optical transport and IP networks: [7]	• Focus is primarily SDNs, traffic engineering: e.g., [8]

- [1] J. A. Boyan, M. L. Littman, "Packet routing in dynamically changing networks: A reinforcement learning approach," NIPS, 1994
- [2] S. Kumar, R. Miikkulainen, "Confidence-based Q-routing: an on-line adaptive network routing algorithm," Artificial Neural Networks in Engineering, 1998.
- [3] L. Chen, B. Hu, Z.-H. Guan, L. Zhao, X. Shen, "Multiagent meta-reinforcement learning for adaptive multipath routing optimization," IEEE Transactions on Neural Networks and Learning Systems, 2021.
- [4] D. Mukhutdinov, A. Filchenkov, A. Shalyto, V. Vyatkin, "Multi-agent deep learning for simultaneous optimization for time and energy in distributed routing system," Future Generation Computer Systems, vol. 94, 2019.
- [5] X. You, X. Li, Y. Xu, H. Feng, J. Zhao, H. Yan. "Toward packet routing with fully-distributed multi-agent deep reinforcement learning," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.
- [6] S. Kaviani, B. Ryu, E. Ahmed, K. A. Larson, A. Le, A. Yahja, J. H. Kim, "Robust and Scalable Routing with Multi-Agent Deep Reinforcement Learning for MANETs," arXiv:2101.03273, 2021.
- [7] J. Suarez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, P. Barlet-Ros, A. Cabellos-Aparicio, "Feature engineering for deep reinforcement learning based routing," ICC, 2019.
- [8] A. Valadarsky, M. Schapira, D. Shahaf, A. Tamar, "Learning to route with deep RL," NIPS Deep Reinforcement Learning Symposium, 2017.

- 1. Motivation
- 2. Our DeepRL approach
- 3. Evaluation
- 4. Related Work
- 5. Wrap-up

Summary and future work

Designed novel distributed routing algorithm using relational DeepRL

Key ideas: Relational features, offline centralized training/online distributed testing, extended time action aka options

Future work: • Mobile networks

- Flexibility in which packet in queue to send
- Super DeepRL strategy trained on multiple different scenarios
- Understanding extent of generalization ability

Training performance

Example network connectivity and congestion

DeepRL training performance

Train **separate DeepRL agent** on each scenario for N=64

Deep RL agents converge relatively quickly to delivering most packets

Deep RL strategies converge relatively quickly to delivering most packets

Testing performance on lattice

Testing on *static lattice* + <u>**high**</u> traffic

DeepRL strategies have lowest per-packet delay

Testing performance with link dynamics

Testing performance on random

Testing on *static* <u>random</u> + high traffic

Testing on *delay tol.* <u>random</u> + high traffic

Static DeepRL strategies

- Static lattice able to generalize to highly connected and dynamic random topologies
- Static random performs best of all except when high congestion in disconnected network

Delay tolerant DeepRL strategies

• Have lowest delay for N=64 and deliver all packets but do not generalize well => Need **more diversity** in training data

BP strategy

• Has advantage due to ability to select any packet in queue, along with use of longer queues

Testing performance on random

Example learned policies

Backpressure routing

Each router

- maintains queue for each destination
- uses difference in queue lengths between router and its neighbors to determine next hop for each packet

What's the problem with backpressure routing?

high delay when insufficient traffic since queues don't fill up