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Multi-hop	wireless	network

Devices		
– operate	as	both	end-hosts	and	

routers	(forward	traffic)	

Why	multi-hop?	
– ease	of	deployment	(no	

infrastructure	needed),	privacy	

Problem:	routing	is	hard	
– changing	network	conditions:			

traffic,	connectivity,	
interference,	mobility	

– competing	routing	goals:	
throughput,	delay,	power	

Solution:		learn	how	to	route	using	deep	reinforcement	learning



Transition to state st+1

What	is	deep	reinforcement	learning?

RL	agent	learns	to	choose	actions	to	maximize	expected	future	reward
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Choose 
action at

State 
st

Reward 
rt

Receive reward rt+1

RL	Agent

st, at -valueQ

Q(st+1, at+1) ← Q(st, at) + α [r + γ max
at

Q(st+1, at+1) − Q(st, at)]
Move	estimate	closer	to	target					

Environment

Simple	update	rule



Transition to state st+1

What	is	deep	reinforcement	learning?

RL	agent	learns	to	choose	actions	to	maximize	expected	future	reward
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Choose 
action at

State 
st

Reward 
rt

Receive reward rt+1

RL	Agent

st, at -valueQ

Environment

Use	deep	neural	network	to	approximate	mapping	
from	(state	 ,	action	 )	to	 -valuest at Q



Transition to state st+1

What	is	deep	reinforcement	learning?

RL	agent	learns	to	choose	actions	to	maximize	expected	future	reward
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Choose 
action at

State 
st

Reward 
rt

Receive reward rt+1

RL	Agent

st, at -valueQ

Environment

Our	goal:	define	RL	agent	for	routing.	Requires	us	to	define	
states,	actions,	and	rewards	useful	for	routing
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Who	chooses	actions?	

Device	agent Packet	agent

Problem:	normally	a	device	chooses	a	packet’s	next	hop.	But	a	
device’s	state	doesn’t	track	what	happens	with	a	forwarded	packet

Solution:	use	packet	agents.		Simplifies	experience	sequence	of	 	,	and	
easily	defines	reward	for	packet	drops,	deliveries,	forwards,	queueing

s, a, s′ , r

Device	 	chooses	next	
hop	for	outgoing	packet

v Packet	1	chooses	next	
hop	at	each	device

Packet	2	chooses	next	
hop	at	each	device

What	should	be	 ’s	
state	over	time?

v
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How	to	define	generalizable	states	and	actions?
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Problem:		network	connectivity	varies,	but	#	of	inputs	to	DNN	are	fixed

State	features	
fs(s)

Action	features	
fa(a)

.	.	.

Expansion	layer

.	.	.

Compression	
layer

.	.	.

u

v-valueQ

.	.	.

Deep	Neural	Network
How	packet	 	at	device	 	
chooses	next	hop	
• For	each	(state,	action)	
pair,	inputs	features	into	
DNN	to	get	 -value		

• 	chooses	action	that	
gives	highest	 -value

p v

Q
p

Q

Goal	1:		be	able	to	use	the	same	DNN	for	topologies	with	different	connectivity	
Goal	2:		handle	varying	#	of	next	hop	actions	despite	DNNs	having	fixed	#	of	inputs	

p



Relational	features	support	generalizability
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Destination	distance	=	3	
Queue	length	=	2

Destination	distance	=	1	
Queue	length	=	3	
	

S1

D1

S2

D2

Relational	features	are	independent	of	network	topology	and	traffic	
– Relational:	distance	to	destination,	queue	length,	…	
– Not	relational:	device	ID,	packet	destination	ID,	traffic	matrix,	…



Relational	state	features
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For	packet	 	at	device	 	with	1-hop	
neighbor	set	 	

p v
Nbr(v) State	features	

fs(s)

Action	features	
fa(a)

.	.	.

Expansion	layer

.	.	.

Compression	
layer

.	.	.

u

vQ-value

.	.	.

Packet	features	 	

• ’s	TTL,	 ’s	location	in	 ’s	queue	

Local	device	features	 	
• distance	from	 	to	 ’s	dest.	

• ’s	queue	length	

• ’s	queue	length	for	only	packets	to	 ’s	dest.	

• ’s	node	degree	

Aggregated	neighbor	features,	 	
• summarize	varying	#	of	neighbors		

• min,	mean,	max	of	

fpkt(p, v, t)
p p v

fdevice(v, p, t)
v p

v
v p
v

fnbr(Nbr(v), p, t)

fdevice(Nbr(v), p, t)

p



Relational	action	features
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Possible	actions	
for	packet	p

State	features	
fs(s)

Action	features	
fa(a)

.	.	.

Expansion	layer

.	.	.

Compression	
layer

.	.	.

u

vQ-value

.	.	.

Let	 .	Then	action	 ’s	features	are	
given	by	the	local	device	features		 	

• distance	from	 	to	 ’s	dest.	

• ’s	queue	length	

• ’s	queue	length	for	only	packets	to	 ’s	dest.	

• ’s	node	degree

u ∈ Nbr(v) ∪ v u
fdevice(u, p, t)

u p
u
u p
u

Packet	 	separately	considers	
each	possible	action	

p
u

p
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Can	we	make	training	more	efficient?

Problem:		training	requires	lots	of	computation	and	data	
Solution:		offline	centralized	training,	online	distributed	testing	
Benefits:			

1. Avoids	expending	bandwidth	or	computation	on	online	training	
2. Allows	data	from	all	DeepRL	agents	to	be	used	in	training,	with	each	

DeepRL	agent	independently	using	same	model	during	testing	

Problem:		how	to	efficiently	model	multi-timestep	actions,	such	as	when	a	
packet	arrives	in	a	queue	and	must	wait	until	it	can	be	forwarded	
Solution:		use	extended-time	actions,	aka	options	(MDP	becomes	semi-MDP)	
Benefits:			

1. Faster	learning	with	less	data	needed	
2. Actions	logically	match	packet	behavior
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Evaluation	overview

Goals:			
• Identify	scenarios	for	which	our	DeepRL	approach	performs	well,	and	
• Test	how	well	a	DeepRL	agent	trained	on	one	scenario	is	able	to	generalize	its	learned	
routing	policy	to	unseen	scenarios	

Training	and	testing	scenarios:	
1. Static	lattice	+	low	traffic	
2. Static	random	+	high	traffic	
3. Static	lattice	+	high	traffic	
4. Dynamic	lattice	+	high	traffic	
5. Delay	tolerant	lattice	+	high	traffic	
6. Delay	tolerant	random	+	high	traffic	

18
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Evaluation	overview

Goals:			
• Identify	scenarios	for	which	our	DeepRL	approach	performs	well,	and	
• Test	how	well	a	DeepRL	agent	trained	on	one	scenario	is	able	to	generalize	its	learned	
routing	policy	to	unseen	scenarios	

Training	and	testing	scenarios:	
1. Static	lattice	+	low	traffic	
2. Static	random	+	high	traffic	
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4. Dynamic	lattice	+	high	traffic:		 	

5. Delay	tolerant	lattice	+	high	traffic:		 	

6. Delay	tolerant	random	+	high	traffic:		 	

p = .8, q = .2
p = .5, q = .4

p = .5, q = .4
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N = 9, 16, 25, 36, 49, 64, 81, 100
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Low	traffic:		 ,					 ,								 	

High	traffic:		 ,				 ,										

λF = .002N/25 λP = .05 λD = 5000

λF = .002N/25 λP = .2 λD = 5000
Flow	arrivals	
(Poisson)

Flow	durations		
(Exponential)

Packet	arrivals		
(Poisson)

Training:			
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N = 9, 16, 25, 36, 49, 64, 81, 100
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Routing	strategies	
Shortest	Path	(SP)	vs.	Back	Pressure	(BP)	vs.	DeepRL	agent		(DRL)		

Training:			
	

Testing:			
N = 64

N = 9, 16, 25, 36, 49, 64, 81, 100

Max	queue	length	is	 ,	can	
forward	any	packet	in	queue

50N



Testing	performance	on	lattice
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Testing	on	static	lattice	+	low	traffic	 Testing	on	static	lattice	+	high	traffic	

SP
BP
DRLSP

BP

DRL

increasing	congestion increasing	congestion

Training	
scenario

DeepRL	strategies	
• Generalize	to	other	values	of	 	and	traffic	levels	
• Outperform	SP	and	BP,	have	lowest	delay	per	packet	(not	shown)

N



Testing	performance	with	link	dynamics
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Testing	on	dynamic	lattice	+	high	traffic	 Testing	on	delay	tol.	lattice	+	high	traffic	

SP

BP
DRLSP

BP
DRL

increasing	congestion increasing	congestion

Disconnected

DeepRL	strategies	
• Generalize	to	other	values	of	 	and	link	dynamics,	have	lowest	per-packet	delay	(not	shown)	
• Outperform	SP	and	BP	except	when	high	congestion	in	disconnected	network	

BP	strategy	
• Has	advantage	due	to	ability	to	select	any	packet	in	queue,	along	with	use	of	longer	queues

N



Testing	performance	on	random
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Testing	on	static	random	+	high	traffic	
SP
BP

Testing	on	delay	tol.	random	+	high	traffic	
SP
BP

increasing	congestion increasing	congestion

Disconnected

DRL

DRL

DRL Static	random	
performs	best	
except	when	
high	congestion	
in	disconnected	
network	

Delay	tolerant	perform	
best	for	 	but	do	not	
generalize:	need	more	
diverse	training	data

N = 64

Takeaways	
• Possible	to	train	offline	and	generalize	to	very	different	unseen	scenarios		
• Flexibility	in	choosing	which	packet	to	forward	is	important	as	network	becomes	
disconnected/congested	

• Ideally:	train	DeepRL	agent	on	set	of	different	scenarios

DRL
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Classifying	RL	routing	approaches
RL	agent	learns	online RL	agent	learns	offline

Distributed

• Early	work	(table-based):	[1][2]	
• Recent	work	has	scalability	limits,	
such	as	using	network	specific	DNN	
inputs,	focus	on	smaller	networks	
and	less	congested	scenarios:	e.g.,	
[3],	[4]

• Recent	work	has	scalability	limits,	such	as	using	
network	specific	DNN	inputs,	focus	on	smaller	
networks	and	less	congested	scenarios:	e.g.,	[5]	[6]	

• Our	work:	Our	use	of	relational	features	allows	
scalability	and	generalization	so	that	we	are	able	to	
train	an	agent	offline

Centralized	
(Unscalable	for	

wireless)
• Optical	transport	and	IP	networks:	[7] • Focus	is	primarily	SDNs,	traffic	engineering:	e.g.,	[8]

[1]	J.	A.	Boyan,	M.	L.	Littman,	“Packet	routing	in	dynamically	changing	networks:	A	reinforcement	learning	approach,”	NIPS,	1994	
[2]		S.	Kumar,	R.	Miikkulainen,	“Confidence-based	Q-routing:	an	on-line	adaptive	network	routing	algorithm,”	Artificial	Neural	Networks	in	
Engineering,	1998.		
[3]	L.	Chen,	B.	Hu,	Z.-H.	Guan,	L.	Zhao,	X.	Shen,	“Multiagent	meta-reinforcement	learning	for	adaptive	multipath	routing	optimization,”	IEEE	
Transactions	on	Neural	Networks	and	Learning	Systems,	2021.	
[4]	D.	Mukhutdinov,	A.	Filchenkov,	A.	Shalyto,	V.	Vyatkin,	“Multi-agent	deep	learning	for	simultaneous	optimization	for	time	and	energy	in	
distributed	routing	system,”	Future	Generation	Computer	Systems,	vol.	94,	2019.	
[5]	X.	You,	X.	Li,	Y.	Xu,	H.	Feng,	J.	Zhao,	H.	Yan.	“Toward	packet	routing	with	fully-distributed	multi-agent	deep	reinforcement	learning,”	IEEE	
Transactions	on	Systems,	Man,	and	Cybernetics:	Systems,	2020.	
[6]	S.		Kaviani,		B.		Ryu,		E.		Ahmed,		K.		A.		Larson,		A.		Le,		A.		Yahja,	J.		H.		Kim,		“Robust		and		Scalable		Routing		with		Multi-Agent		Deep	
Reinforcement	Learning	for	MANETs,”	arXiv:2101.03273,	2021.	
[7]	J.	Suarez-Varela,	A.	Mestres,	J.	Yu,	L.	Kuang,	H.	Feng,	P.	Barlet-Ros,	A.	Cabellos-Aparicio,	“Feature	engineering	for	deep	reinforcement	
learning	based	routing,”	ICC,	2019.	
[8]	A.	Valadarsky,	M.	Schapira,	D.	Shahaf,	A.	Tamar,	“Learning	to	route	with	deep	RL,”	NIPS	Deep	Reinforcement	Learning	Symposium,	2017.	



Outline

1. Motivation	

2. Our	DeepRL	approach	

3. Evaluation	

4. Related	Work	

5. Wrap-up

28



Summary	and	future	work

Designed	novel	distributed	routing	algorithm	using	relational	DeepRL

Key	ideas: Relational	features,	offline	centralized	training/online	
distributed	testing,	extended	time	action	aka	options	
	
• Mobile	networks 

• Flexibility	in	which	packet	in	queue	to	send 

• Super	DeepRL	strategy	trained	on	multiple	
different	scenarios 

• Understanding	extent	of	generalization	ability

Future	work:

29
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Training	performance
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Example	network	connectivity	and	congestion
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DeepRL	training	performance
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Train	separate	DeepRL	agent	on	each	scenario	for	 	
• Deep	RL	agents	converge	relatively	quickly	to	delivering	most	packets

N = 64

Dynamic	and	delay	tolerant	
lattices	are	very	congested

Deep	RL	strategies	converge	relatively	quickly	to	delivering	most	packets



Testing	performance	on	lattice
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Testing	on	static	lattice	+	low	traffic	 Testing	on	static	lattice	+	high	traffic	

SP
BP
DRLSP

BP

DRL

increasing	congestion increasing	congestion

Training	
scenario

DeepRL	strategies	have	lowest	per-packet	delay	



Testing	performance	with	link	dynamics
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Testing	on	dynamic	lattice	+	high	traffic	 Testing	on	delay	tol.	lattice	+	high	traffic	

SP

BP
DRLSP

BP
DRL

increasing	congestion increasing	congestionDeepRL	strategy	has	lowest	per-packet	delay	

Disconnected

DRL

BP

SPSPDRL

BP



Testing	performance	on	random
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Testing	on	static	random	+	high	traffic	
SP
BP

Testing	on	delay	tol.	random	+	high	traffic	
SP
BP

increasing	congestion increasing	congestion

Disconnected

DRL

DRL

Static	DeepRL	strategies	
• Static	lattice	able	to	generalize	to	highly	connected	and	dynamic	random	topologies	
• Static	random	performs	best	of	all	except	when	high	congestion	in	disconnected	network	

Delay	tolerant	DeepRL	strategies	
• Have	lowest	delay	for	 	and	deliver	all	packets	but	do	not	generalize	well	

=>	Need	more	diversity	in	training	data	

BP	strategy	
• Has	advantage	due	to	ability	to	select	any	packet	in	queue,	along	with	use	of	longer	queues

N = 64

DRL

DRL Static	random	
performs	best	
except	when	
high	congestion	
in	disconnected	
network	



Testing	performance	on	random
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Testing	on	static	random	+	high	traffic	
SP
BP

Testing	on	delay	tol.	random	+	high	traffic	
SP
BP

increasing	congestion increasing	congestion

Disconnected

DRL

SP

BP

DRL	Rand

DRL	Rand

BP

SP

DRL	Rand

DRL	Rand

DRL

DRL	Lat

DRL	Lat

DRL	Lat

DRL	Lat

DRL

DRL



Example	learned	policies
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Static	random	+	high	traffic																		Static	lattice	+	high	traffic																Delay	tol.	lattice	+	high	traffic



Backpressure	routing

Each	router		
– maintains	queue	for	each	destination		
– uses	difference	in	queue	lengths	between	router	and	its	neighbors	to	

determine	next	hop	for	each	packet	

What’s	the	problem	with	backpressure	routing?	
– high	delay	when	insufficient	traffic	since	queues	don’t	fill	up
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